Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280429

RESUMO

BackgroundInvestigating antibody titres in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. MethodsHuman coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of PCR-confirmed, COVID-19 recovered individuals (k=57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n=341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qRT-PCR performed on self-collected nasopharyngeal specimens. ResultsBivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p<0.001) and vaccination prevented waning (B=1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (B=-0.24 [95%CI: -1.2-(-0.12)]). A non-significant trend towards higher spike antibodies against endemic beta-HCoVs was also noted. On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. ConclusionsOur study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261156

RESUMO

ImportanceMeasuring humoral immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 vaccines and finding population-level correlates of protection against coronavirus disease presents an immediate challenge to public health practitioners. ObjectiveTo study the diagnostic accuracy and predictive value of finger prick capillary dried blood spot samples tested using an anti-immunoglobulin G (IgG) serology assay to measure SARS-CoV-2 seropositivity and the humoral immunogenicity of COVID-19 vaccination. Design, Setting and ParticipantsThis cross-sectional study enrolled participants (n= 644) who had paired DBS and serum samples collected by finger prick and venipuncture, respectively, in British Columbia, Canada between January 12th, 2020 and May 21st, 2021. Samples were tested by a multiplex electrochemiluminescence assay for SARS-CoV-2 anti-Spike (S), -Nucleocapsid (N) and -receptor binding domain (RBD) IgG reactivity using a Meso Scale Discovery (MSD) platform. Additionally, unpaired DBS samples (n= 6,706) that were collected in the province during the same time period were included for analysis of SARS-CoV-2 anti-N IgG reactivity. ExposureCollection of a capillary dried blood spot by finger prick alone or paired with serum by venipuncture. OutcomeHumoral immune response to SARS-CoV-2 measured by detection of anti-S, -N or - RBD IgG. ResultsIn comparison to a paired-serum reference, dried blood spot samples possess a sensitivity of 80% (95% CI: 61%-91%) and specificity of 97% (95% CI: 95%-98%). Receiver operator characteristic curve analysis (ROC) found that participant DBS samples tested for anti-SARS-CoV-2 IgG by MSD V-PLEX COVID-19 Coronavirus Panel 2 assay accurately classify SARS-CoV-2 seroconversion at an 88% percent rate, AUC= 88% (95% CI: 81%-96%). Modelling found that a dried blood spot-based testing approach has a high positive predictive value (98% [95% CI: 98%-99%]) in a theoretical population with seventy-five percent COVID-19 vaccine coverage. At lower vaccine coverages of fifteen and forty-five percent, the tests positive predictive value decreased, and the negative predictive value increased. ConclusionWe demonstrate that dried blood spot collected samples, when tested using an electrochemiluminescence assay, provide a valid alternative to traditional venipuncture and should be considered to reliably detect SARS-CoV-2 seropositivity. Key PointsO_ST_ABSQuestionC_ST_ABSWhat is the diagnostic accuracy and predictive value of immunoglobulin G serology on finger prick capillary dried blood spot samples to measure SARS-CoV-2 humoral immunogenicity? FindingsIn comparison to a paired-serum reference, dried blood spot samples tested for anti-SARS-CoV-2 IgG possess a sensitivity of 80% (95% CI: 61%-91%) and specificity of 97% (95% CI: 95%-98%). Dried blood spot testing has a positive predictive value of 98% (95% CI: 98%-99%) when modelled in a theoretical population with COVID-19 vaccine coverage of seventy-five percent. MeaningDried blood spot samples have equal diagnostic accuracy to serum collected by venipuncture when tested by electrochemiluminescence assay and should be considered to reliably detect SARS-CoV-2 seropositivity.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251364

RESUMO

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity. Article SummaryA scalable, non-proprietary, magnetic bead-based automated nucleic acid extraction protocol optimised for minimum cross-well contamination

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20237206

RESUMO

BackgroundAngiotensin converting enzyme 2 (ACE2) serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 expression in people tested for COVID-19 and the relationship between ACE2 expression and SARS-CoV-2 viral RNA load, while adjusting for expression of the complementary protease, Transmembrane serine protease 2 (TMPRSS2), soluble ACE2, age, and biological sex. MethodsA cross-sectional study of n=424 participants aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Participants who tested negative or positive for COVID-19 were matched by age and biological sex. Viral and host gene expression was measured by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. FindingsAnalysis shows no association between age and nasopharyngeal ACE2 expression in those who tested negative for COVID-19 (P=0{middle dot}092). Mean expression of transmembrane (P=1{middle dot}2e-4), soluble ACE2 (P<0{middle dot}0001) and TMPRSS2 (P<0{middle dot}0001) differed between COVID-19-negative and -positive groups. In bivariate analysis of COVID-19-positive participants, expression of transmembrane ACE2 positively correlated with SARS-CoV-2 RNA viral load (P<0{middle dot}0001), expression of soluble ACE2 negatively correlated (P<0{middle dot}0001), and no correlation was found with TMPRSS2 (P=0{middle dot}694). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 expression (B=0{middle dot}886, 95%CI:[0{middle dot}596 to 1{middle dot}18]), while expression of soluble ACE2 may protect against high viral RNA load in the upper respiratory tract (B= -0{middle dot}0990, 95%CI:[-0{middle dot}176 to -0{middle dot}0224]). InterpretationNasopharyngeal ACE2 expression plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transmembrane ACE2 positively correlates, while soluble ACE2 negatively correlates with viral RNA load after adjusting for age, biological sex and expression of TMPRSS2. FundingThis project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...