Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570906

RESUMO

The production of blueberries for fresh and processed consumption is increasing globally and has more than doubled in the last decade. Blueberry is grown commercially across a variety of climates in over 30 countries. The major classes of plants utilized for the planting and breeding of new cultivars are highbush, lowbush, half-high, Rabbiteye, and Southern highbush. Plants can be propagated by cuttings or in vitro micropropagation techniques. In vitro propagation offers advantages for faster generation of a large number of disease-free plants independent of season. Labor costs for in vitro propagation can be reduced using new cultivation technology and automation. Here, we test and demonstrate successful culture conditions and medium compositions for in vitro initiation, multiplication, and rooting of the Southern highbush cultivar 'Blue Suede™' (Vaccinium hybrid).

2.
Blood Adv ; 6(8): 2453-2465, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34933342

RESUMO

Shear-induced platelet aggregation (SIPA) occurs under elevated shear rates (10 000 s-1) found in stenotic coronary and carotid arteries. The pathologically high shear environment can lead to occlusive thrombosis by SIPA from the interaction of nonactivated platelets and von Willebrand factor (VWF) via glycoprotein Ib-A1 binding. This process under high shear rates is difficult to visualize experimentally with concurrent molecular- and cellular-resolutions. To understand this fast bonding, we employ a validated multiscale in silico model incorporating measured molecular kinetics and a thrombosis-on-a-chip device to delineate the flow-mediated biophysics of VWF and platelets assembly into mural microthrombi. We show that SIPA begins with VWF elongation, followed by agglomeration of platelets in the flow by soluble VWF entanglement before mural capture of the agglomerate by immobilized VWF. The entire SIPA process occurs on the order of 10 milliseconds with the agglomerate traveling a lag distance of a few hundred microns before capture, matching in vitro results. Increasing soluble VWF concentration by ∼20 times in silico leads to a ∼2 to 3 times increase in SIPA rates, matching the increase in occlusion rates found in vitro. The morphology of mural aggregates is primarily controlled by VWF molecular weight (length), where normal-length VWF leads to cluster or elongated aggregates and ultra-long VWF leads to loose aggregates seen by others' experiments. Finally, we present phase diagrams of SIPA, which provides biomechanistic rationales for a variety of thrombotic and hemostatic events in terms of platelet agglomeration and capture.


Assuntos
Agregação Plaquetária , Trombose , Plaquetas/metabolismo , Humanos , Estresse Mecânico , Fator de von Willebrand/metabolismo
3.
J Biomech ; 120: 110349, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33711601

RESUMO

Occlusive thrombosis in arteries causes heart attacks and strokes. The rapid growth of thrombus at elevated shear rates (~10,000 1/s) relies on shear-induced platelet aggregation (SIPA) thought to come about from the entanglement of von Willebrand factor (VWF) molecules. The mechanism for SIPA is not yet understood in terms of cell- and molecule-level dynamics in fast flowing bloodstreams. Towards this end, we develop a multiscale computational model to recreate SIPA in silico, where the suspension dynamics and interactions of individual platelets and VWF multimers are resolved directly. The platelet-VWF interaction via GP1b-A1 bonds is prescribed with intrinsic binding rates theoretically derived and informed by single-molecule measurements. The model is validated against existing microfluidic SIPA experiments, showing good agreement with the in vitro observations in terms of the morphology, traveling distance and capture time of the platelet aggregates. Particularly, the capture of aggregates can occur in a few milliseconds, comparable to the platelet transit time through pathologic arterial stenotic sections and much shorter than the time for shear-induced platelet activation. The multiscale SIPA simulator provides a cross-scale tool for exploring the biophysical mechanisms of SIPA in silico that are difficult to access with single-molecule measurements or micro-/macro-fluidic assays only.


Assuntos
Agregação Plaquetária , Trombose , Biofísica , Plaquetas , Simulação por Computador , Humanos , Estresse Mecânico
4.
Phys Rev E ; 102(1-1): 013310, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795082

RESUMO

Blood flowing through microvascular bifurcations has been an active research topic for many decades, while the partitioning pattern of nanoscale solutes in the blood remains relatively unexplored. Here we demonstrate a multiscale computational framework for direct numerical simulation of the nanoparticle (NP) partitioning through physiologically relevant vascular bifurcations in the presence of red blood cells (RBCs). The computational framework is established by embedding a particulate suspension inflow-outflow boundary condition into a multiscale blood flow solver. The computational framework is verified by recovering a tubular blood flow without a bifurcation and validated against the experimental measurement of an intravital bifurcation flow. The classic Zweifach-Fung (ZF) effect is shown to be well captured by the method. Moreover, we observe that NPs exhibit a ZF-like heterogeneous partition in response to the heterogeneous partition of the RBC phase. The NP partitioning prioritizes the high-flow-rate daughter branch except for extreme (large or small) suspension flow partition ratios under which the complete phase separation tends to occur. By analyzing the flow field and the particle trajectories, we show that the ZF-like heterogeneity in the NP partition can be explained by the RBC-entrainment effect caused by the deviation of the flow separatrix preceded by the tank treading of RBCs near the bifurcation junction. The recovery of homogeneity in the NP partition under extreme flow partition ratios is due to the plasma skimming of NPs in the cell-free layer. These findings, based on the multiscale computational framework, provide biophysical insights to the heterogeneous distribution of NPs in microvascular beds that are observed pathophysiologically.


Assuntos
Eritrócitos/metabolismo , Microvasos/metabolismo , Modelos Biológicos , Nanopartículas , Hemodinâmica , Cinética
5.
Ann Biomed Eng ; 47(12): 2516, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686309

RESUMO

This erratum is to correct the heading of column 2 (titled "b") in Table 1, which was missing proper units. The heading for that column was revised to include proper units, reading "b (× 10-6 s)".

6.
In Vitro Cell Dev Biol Plant ; 54(6): 612-620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459490

RESUMO

Somatic embryogenesis offers many benefits for clonal propagation in large-scale plant production of conifers. A key rate-limiting step is the conversion from early-stage somatic embryos in pro-embryogenic masses (PEMs) to the maturation stage. Immature embryos in PEMs are present at different developmental stages, where some are unable to respond to the maturation treatment, thus limiting yields of mature embryos. Synchronization of early somatic embryo development in PEMs could greatly improve subsequent yields of mature embryos. A temporary immersion bioreactor designed for Norway spruce (Picea abies (L.) H.Karst.) was used in this study. Through a specific system for dispersion, connected tissue of PEMs, composed of immature embryos grown in liquid medium in the temporary immersion bioreactors or on solid medium as a control, was dispersed and redistributed in a more uniform spatial arrangement. It was demonstrated that development of mature embryos could be significantly stimulated by dispersion, compared to controls, in both medium types. Synchronization of maturation was evaluated by a statistical approach. The present study shows that the yield of mature embryos from dispersed PEMs was three to five times higher than that from non-dispersed controls in three of four cell lines of Norway spruce tested, both in bioreactors and on solid medium.

7.
Biomicrofluidics ; 12(4): 042210, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29887934

RESUMO

Platelet accumulation under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current antiplatelet therapies remain ineffective within a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation by biophysical means without the use of platelet inactivating drugs. Our computational multi-scale dynamics model has predicted that charged particles of a specific size may entangle von Willebrand Factor (vWF) polymers and reduce the amount of elongation at high shear rates. We tested this hypothesis experimentally for negatively charged nanoparticles (CNP) to inhibit arterial thrombus formation. CNP of a particular size and charge inhibited thrombus formation, with a 10-fold peak inhibition over control conditions of thrombotic occlusion. Particles of differing material composition, size, and charge had little effect as predicted by computational studies. Surprisingly, the dose response curve was not sigmoidal, but exhibited a peak at 1.5 CNP:vWF proteins, which was not predicted by the model. This study describes a new antithrombotic agent that may have a different mechanism of action than current pharmaceutical therapies.

8.
J Biomech Eng ; 140(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715334

RESUMO

Cytoplasmic viscosity-dependent margination of red blood cells (RBC) for flow inside microchannels was studied using numerical simulations, and the results were verified with microfluidic experiments. Wide range of suspension volume fractions or hematocrits was considered in this study. Lattice Boltzmann method for fluid-phase coupled with spectrin-link method for RBC membrane deformation was used for accurate analysis of cell margination. RBC margination behavior shows strong dependence on the internal viscosity of the RBCs. At equilibrium, RBCs with higher internal viscosity marginate closer to the channel wall and the RBCs with normal internal viscosity migrate to the central core of the channel. Same margination pattern has been verified through experiments conducted with straight channel microfluidic devices. Segregation between RBCs of different internal viscosity is enhanced as the shear rate and the hematocrit increases. Stronger separation between normal RBCs and RBCs with high internal viscosity is obtained as the width of a high aspect ratio channel is reduced. Overall, the margination behavior of RBCs with different internal viscosities resembles with the margination behavior of RBCs with different levels of deformability. Observations from this work will be useful in designing microfluidic devices for separating the subpopulations of RBCs with different levels of deformability that appear in many hematologic diseases such as sickle cell disease (SCD), malaria, or cancer.


Assuntos
Deformação Eritrocítica , Eritrócitos/citologia , Dispositivos Lab-On-A-Chip , Viscosidade , Hematócrito
9.
Phys Rev E ; 96(1-1): 013109, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347073

RESUMO

The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.

10.
Phys Rev E ; 93(2): 023109, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986415

RESUMO

The effects of flow and particle properties on margination of particles in red blood cell (RBC) suspensions is investigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination rate in nondilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating particles in the RBC-filled region. We derive a scaling law for margination length in a straight channel. Margination length increases cubically with channel height and is independent of shear rate. We verify this scaling law for margination length by DNS of flowing RBCs and marginating particles. We also show that rigidity and size both lead to particle margination with rigidity having a more significant effect compared to size within the range of parameters in this study.


Assuntos
Eritrócitos/fisiologia , Hemodinâmica , Modelos Biológicos , Resistência ao Cisalhamento , Fenômenos Biomecânicos , Plaquetas/fisiologia , Difusão , Deformação Eritrocítica , Membrana Eritrocítica/metabolismo , Tamanho da Partícula
11.
Ann Biomed Eng ; 44(8): 2339-2350, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26795978

RESUMO

The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100(®) system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions.


Assuntos
Microfluídica/métodos , Modelos Cardiovasculares , Resistência ao Cisalhamento , Trombose/metabolismo , Trombose/fisiopatologia , Animais , Valor Preditivo dos Testes , Suínos
12.
Ann Biomed Eng ; 43(6): 1410-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25348844

RESUMO

Computational modeling of arterial thrombus formation based on patient-specific data holds promise as a non-invasive tool for preventive diagnosis of atherosclerotic lesions. Platelet transport to the surface of a growing thrombus may be a rate limiting step in rapid thrombus formation, so accurate modeling of platelet transport may be essential for computational modeling of arterial thrombus formation. The presence of red blood cells (RBCs) in blood greatly affects platelet transport. In flowing blood, RBCs migrate away from the walls and platelets marginate toward the walls. We investigate the mechanics of platelet margination by direct simulation of cellular blood flow. We show that platelet margination can be explained by RBC-enhanced shear-induced diffusion of platelets in the RBC-filled region combined with platelet trapping in the RBC-free region. A simple continuum model is introduced based on the proposed mechanism. Using an experimental correlation for effective diffusivity in blood, the continuum model can recover experimental results from the literature over a wide range of tube diameters.


Assuntos
Plaquetas/metabolismo , Simulação por Computador , Modelos Cardiovasculares , Resistência ao Cisalhamento , Trombose/metabolismo , Trombose/fisiopatologia , Transporte Biológico Ativo , Velocidade do Fluxo Sanguíneo , Plaquetas/patologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Humanos , Trombose/patologia
13.
J Biomech Eng ; 136(10): 101009, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070372

RESUMO

Bileaflet mechanical heart valves (BMHVs) are among the most popular prostheses to replace defective native valves. However, complex flow phenomena caused by the prosthesis are thought to induce serious thromboembolic complications. This study aims at employing a novel multiscale numerical method that models realistic sized suspended platelets for assessing blood damage potential in flow through BMHVs. A previously validated lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through a 23 mm St. Jude Medical (SJM) Regent™ valve in the aortic position at very high spatiotemporal resolution with the presence of thousands of suspended platelets. Platelet damage is modeled for both the systolic and diastolic phases of the cardiac cycle. No platelets exceed activation thresholds for any of the simulations. Platelet damage is determined to be particularly high for suspended elements trapped in recirculation zones, which suggests a shift of focus in blood damage studies away from instantaneous flow fields and toward high flow mixing regions. In the diastolic phase, leakage flow through the b-datum gap is shown to cause highest damage to platelets. This multiscale numerical method may be used as a generic solver for evaluating blood damage in other cardiovascular flows and devices.


Assuntos
Sangue , Próteses Valvulares Cardíacas/efeitos adversos , Modelos Cardiovasculares , Fluxo Pulsátil , Velocidade do Fluxo Sanguíneo , Plaquetas/fisiologia , Humanos
14.
J Biomech ; 47(12): 3169-77, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25011622

RESUMO

Despite pressing needs, there are currently no FDA approved prosthetic valves available for use in the pediatric population. This study is performed for predictive assessment of blood damage in bileaflet mechanical heart valves (BMHVs) with pediatric sizing and flow conditions. A model of an adult-sized 23 mm St. Jude Medical (SJM) Regent(™) valve is selected for use in simulations, which is scaled in size for a 5-year old child and 6-month old infant. A previously validated lattice-Boltzmann method (LBM) is used to simulate pulsatile flow with thousands of suspended platelets for cases of adult, child, and infant BMHV flows. Adult BMHV flows demonstrate more disorganized small-scale flow features, but pediatric flows are associated with higher fluid shear stresses. Platelet damage in the pediatric cases is higher than in adult flow, highlighting thrombus complication dangers of pediatric BMHV flows. This does not necessarily suggest clinically important differences in thromboembolic potential. Highly damaged platelets in pediatric flows are primarily found far downstream of the valve, as there is less flow recirculation in pediatric flows. In addition, damage levels are well below expected thresholds for platelet activation. The extent of differences here documented between the pediatric and adult cases is of concern, demanding particular attention when pediatric valves are designed and manufactured. However, the differences between the pediatric and adult cases are not such that development of pediatric sized valves is untenable. This study may push for eventual approval of prosthetic valves resized for the pediatric population. Further studies will be necessary to determine the validity and potential thrombotic and clinical implications of these findings.


Assuntos
Envelhecimento/fisiologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/fisiologia , Adulto , Plaquetas/fisiologia , Pré-Escolar , Simulação por Computador , Circulação Coronária , Humanos , Lactente , Modelos Cardiovasculares , Fluxo Pulsátil , Trombose/etiologia
15.
Ann Biomed Eng ; 41(2): 238-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22965639

RESUMO

An investigation of margination dependence on hematocrit, platelet shape, and viscosity ratio of plasma to cytoplasm is presented. Whole blood is modeled as a suspension of deformable red blood cells (RBCs) and rigid platelets in a viscous liquid. The fluid phase is simulated using the lattice-Boltzmann method, the RBC membranes are modeled with a coarse-grained spectrin-link method, and the dynamics of rigid particles are updated using Newton's equations of motion for axisymmetric shapes. The results emphasize that an increase in hematocrit increases the rate of margination. The viscosity ratio between the interior cytoplasm and suspending fluid can considerably alter the rate of margination. The aspect ratio of surrogate platelet particles influences the rate of margination as well. Spherical particles tend to migrate more quickly than disks. Highly viscous or rigid RBCs slow down margination.


Assuntos
Plaquetas/fisiologia , Modelos Biológicos , Simulação por Computador , Eritrócitos/fisiologia , Hematócrito , Viscosidade
17.
Ann Biomed Eng ; 40(7): 1468-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22215278

RESUMO

Previous experimental and numerical blood studies have shown that high shear stress levels, long exposure times to these shear stresses, and flow recirculation promote thromboembolism. Artificial heart valves, in particular bileaflet mechanical heart valves (BMHVs), are prone to developing thromboembolic complications. These complications often form at the hinge regions of BMHVs and the associated geometry has been shown to affect the local flow dynamics and the associated thrombus formation. However, to date no study has focused on simulating the motion of realistically modeled blood elements within the hinge region to numerically estimate the hinge-related blood damage. Consequently, this study aims at (a) simulating the motion of realistically modeled platelets during the leakage (mid-diastole) phase in different BMHV hinge designs placed in the aortic position and (b) quantitatively comparing the blood damage associated with different designs. Three designs are investigated to assess the effects of hinge geometry and dimensions: a 23 mm St. Jude Medical Regent™ valve hinge with two different gap distances between the leaflet ear and hinge recess; and a 23 mm CarboMedics (CM) aortic valve hinge. The recently developed lattice-Boltzmann method with external boundary force method is used to simulate the hinge flow and capture the dynamics and surface shear stresses of individual platelets. A blood damage index (BDI) value is then estimated based on a linear shear stress-exposure time BDI model. The velocity boundary conditions are obtained from previous 3D large-scale simulations of the hinge flow fields. The trajectories of the blood elements in the hinge region are found to be qualitatively similar for all three hinges, but the shear stresses experienced by individual platelets are higher for the CM hinge design, leading to a higher BDI. The results of this study are also shown to be in good agreement with previous studies, thus validating the numerical method for future research in BMHV flows. This study provides a general numerical tool to optimize the hinge design based on both hemodynamic and thromboembolic performance.


Assuntos
Plaquetas/metabolismo , Coração Artificial/efeitos adversos , Modelos Cardiovasculares , Estresse Fisiológico , Tromboembolia/etiologia , Tromboembolia/metabolismo , Velocidade do Fluxo Sanguíneo , Humanos
18.
Biotechnol Bioeng ; 108(5): 1089-99, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21449024

RESUMO

Somatic embryogenesis is the only method with the potential for industrial scale clonal propagation of conifers. Implementation of the method has so far been hampered by the extensive manual labor required for development of the somatic embryos into plants. The utilization of bioreactors is limited since the somatic embryos will not mature and germinate under liquid culture conditions. The negative effect on mature embryo yields from liquid culture conditions has been previously described. We have described the negative effects of shear stress on the development of early stage somatic embryos (proembryogenic masses; PEMs) at shear stresses of 0.086 and 0.14 N/m(2). In the present study, additional flow rates were studied to determine the effects of shear stress at lower rates resembling shear stress in a suspension culture flask. The results showed that shear stress at 0.009, 0.014, and 0.029 N/m(2) inhibited the PEM expansions comparing with the control group without shear stress. This study also provides validation for the cross-correlation method previously developed to show the effect of shear stress on early stage embryo suspensor cell formation and polarization. Furthermore, shear stress was shown to positively affect the uptake of water into the cells. The results indicate that the plasmolyzing effect from macromolecules added to liquid culture medium to stimulate maturation of the embryos are affected by liquid culture conditions and thus can affect the conversion of PEMs into mature somatic embryos.


Assuntos
Picea/embriologia , Sementes/crescimento & desenvolvimento , Resistência ao Cisalhamento
19.
Ann Biomed Eng ; 39(2): 897-910, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20976558

RESUMO

Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/fisiologia , Hemólise/fisiologia , Modelos Cardiovasculares , Ativação Plaquetária/fisiologia , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Análise de Falha de Equipamento , Humanos , Desenho de Prótese
20.
Biotechnol Bioeng ; 105(3): 588-99, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19787637

RESUMO

The shear stress effect on directional expansion of pro embryogenic masses (PEMs) and suspensor cell development of somatic embryos of Norway spruce (Picea abies) at the proliferation stage was studied by a direct and quantitative image analysis system. The experimental system allowed for detailed observations of the effect of hydrodynamic shear stress in rotating and deforming liquid cultures of proliferating Norway spruce somatic embryos. Briefly, somatic embryos at an early development stage comprised only of clusters of meristematic cells without suspensor cells were fixed on an alginate film. The alginate film was affixed on the bottom of a flow cell and the somatic embryos were subjected to laminar flow through the chamber of the flow cell. Magnified images of the cell clusters were collected every 24 h. The image data was processed based on a normalized cross-correlation method, capable of measuring morphological and size features of individual cell clusters in both temporal and spatial domains. No suspensor cells developed in the cell clusters under shear stress of 140 s(-1) for the duration of the experiments. Cell clusters in the control cultured in stationary liquid conditions developed suspensor cells after 5-9 days in culture. Furthermore, the radial growth of meristematic cell clusters was inhibited by shear rates of 86 and 140 s(-1), corresponding to shear stress of 0.086 and 0.14 N/m(2), compared to growth under stationary conditions. The shear rate showed a significant negative correlation to growth rate. Control group showed no preference for direction during growth under static conditions.


Assuntos
Picea/citologia , Picea/crescimento & desenvolvimento , Sementes/citologia , Sementes/crescimento & desenvolvimento , Estresse Mecânico , Processamento de Imagem Assistida por Computador , Microscopia de Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...