Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 61(6): 2038-2047, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34302339

RESUMO

The relationship between structure and function is a major constituent of the rules of life. Structures and functions occur across all levels of biological organization. Current efforts to integrate conceptual frameworks and approaches to address new and old questions promise to allow a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization. Here, we provide unifying and generalizable definitions of both structure and function that can be applied across all levels of biological organization. However, we find differences in the nature of structures at the organismal level and below as compared to above the level of the organism. We term these intrinsic and emergent structures, respectively. Intrinsic structures are directly under selection, contributing to the overall performance (fitness) of the individual organism. Emergent structures involve interactions among aggregations of organisms and are not directly under selection. Given this distinction, we argue that while the functions of many intrinsic structures remain unknown, functions of emergent structures are the result of the aggregate of processes of individual organisms. We then provide a detailed and unified framework of the structure-function relationship for intrinsic structures to explore how their unknown functions can be defined. We provide examples of how these scalable definitions applied to intrinsic structures provide a framework to address questions on structure-function relationships that can be approached simultaneously from all subdisciplines of biology. We propose that this will produce a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization.


Assuntos
Modelos Biológicos , Animais , Humanos
2.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26063842

RESUMO

Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar-canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction.


Assuntos
Fêmur/fisiologia , Rádio (Anatomia)/fisiologia , Estresse Mecânico , Vertebrados/fisiologia , Animais , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...