Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509693

RESUMO

The incidence of melanoma, being one of the most commonly occurring cancers, has been rising since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. The conventional targeted therapy is well defined and effective for advanced-stage melanomas for patients not responding to the standard-of-care immunotherapy. However, targeted therapies do not prove to be as effective as patients inevitably develop V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-inhibitor resistance to the respective drugs. Factors which are driving melanoma drug resistance mainly involve mutations in the mitogen-activated protein kinase (MAPK) pathway, e.g., BRAF splice variants, neuroblastoma RAS viral oncogene homolog (NRAS) amplification or parallel survival pathways. However, those mechanisms do not explain all cases of occurring resistances. Therefore, other factors accounting for BRAFi resistance must be better understood. Among them there are long non-coding RNAs (lncRNAs), but these remain functionally poorly understood. Here, we conduct a comprehensive, unbiased, and integrative study of lncRNA expression, coupled with a Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-mediated activation (CRISPRa) and small molecule inhibitor screening for BRAF inhibitor resistance to expand the knowledge of potentially druggable lncRNAs, their function, and pave the way for eventual combinatorial treatment approaches targeting diverse pathways in melanoma.

2.
Cureus ; 15(4): e37704, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37206524

RESUMO

Bone healing constitutes a complex process involving cellular and pathophysiological mechanisms. Despite progress in osteosynthesis techniques, fracture union continues to be challenging. In some cases, it is not ultimately achieved or is delayed relative to the expected time resulting in economic and social outcomes for the patient and the health system. In addition to surgical treatment, biophysical methods have been developed to assist in fracture healing used in combination or individually. Biophysical stimulation is a non-invasive therapy used in orthopedic practice to increase and enhance tissue's reparative and anabolic activities. This study reviewed the existing literature, including electromagnetic fields, ultrasound, laser, extracorporeal shockwave therapy, and electrical stimulation, and revealed the efficacy of biophysical stimulation for bone healing. This study aims to define if these methods are helpful, especially in cases of non-union. Biophysical stimulation requires care and precision in use to ensure the success expected of it by physicians and patients.

3.
J Surg Case Rep ; 2021(11): rjab523, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34858578

RESUMO

Femoral nail extraction, although it is considered a challenging procedure for orthopedic surgeons, can be simplified. We present a new technique to aid the removal of a proximally (antegrade) inserted femoral nail by applying drilling consecutively in order to identify the margins and depth of the nail into the intramedyllary canal of the femur. The damage to the bone is minimal as we use k-wires or drilling and in our practice was uneventful. This technique is the first to be reported in literature. Most authors suggest techniques that enable radiolucent table and fluoroscopy techniques using C-arm. With this technique, traction table and fluoroscopy techniques seem to be less essential to accomplish the removal of a proximally (antegrade) inserted femoral nail.

4.
Acad Pathol ; 8: 23742895211006818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013020

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, created an unprecedented need for comprehensive laboratory testing of populations, in order to meet the needs of medical practice and to guide the management and functioning of our society. With the greater New York metropolitan area as an epicenter of this pandemic beginning in March 2020, a consortium of laboratory leaders from the assembled New York academic medical institutions was formed to help identify and solve the challenges of deploying testing. This report brings forward the experience of this consortium, based on the real-world challenges which we encountered in testing patients and in supporting the recovery effort to reestablish the health care workplace. In coordination with the Greater New York Hospital Association and with the public health laboratory of New York State, this consortium communicated with state leadership to help inform public decision-making addressing the crisis. Through the length of the pandemic, the consortium has been a critical mechanism for sharing experience and best practices in dealing with issues including the following: instrument platforms, sample sources, test performance, pre- and post-analytical issues, supply chain, institutional testing capacity, pooled testing, biospecimen science, and research. The consortium also has been a mechanism for staying abreast of state and municipal policies and initiatives, and their impact on institutional and laboratory operations. The experience of this consortium may be of value to current and future laboratory professionals and policy-makers alike, in dealing with major events that impact regional laboratory services.

5.
Sci Rep ; 11(1): 5538, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692390

RESUMO

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , COVID-19/terapia , Estudos de Coortes , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Testes de Neutralização/métodos , Pandemias , SARS-CoV-2/patogenicidade , Soro/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Nat Commun ; 11(1): 99, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911617

RESUMO

Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy.


Assuntos
Melanoma/imunologia , Proteínas Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Quimiocina CCL22/genética , Quimiocina CCL22/imunologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/imunologia , Humanos , Melanoma/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética
7.
Cancer Discov ; 7(10): 1065-1066, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28974530

RESUMO

In this study, McKeown and colleagues carried out a genome-wide characterization and stratification of the enhancer landscape in acute myeloid leukemia (AML). The authors' analysis led to the discovery of a novel RARA superenhancer found in a subset of patients with AML, rendering these leukemia cells highly sensitive to SY-1425, a highly potent RARA agonist able to induce myeloid differentiation in these high-expressing RARA AML subtypes. Cancer Discov; 7(10); 1065-6. ©2017 AACR.See related article by McKeown et al., p. 1136.


Assuntos
Leucemia Mieloide Aguda , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...