Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Front Pharmacol ; 15: 1450493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346564

RESUMO

Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.

2.
Elife ; 122024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163103

RESUMO

Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.


Assuntos
Plaquetas , Diferenciação Celular , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Remielinização/fisiologia , Camundongos , Plaquetas/fisiologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Modelos Animais de Doenças , Oligodendroglia/fisiologia , Feminino
3.
J Transl Med ; 22(1): 666, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020346

RESUMO

BACKGROUND: The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS: In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS: Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS: Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.


Assuntos
Proteômica , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo
4.
J Med Life ; 17(1): 24-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737662

RESUMO

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/farmacologia , Humanos , Peptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais
5.
Age Ageing ; 53(Suppl 2): ii47-ii59, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38745492

RESUMO

Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression. Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions. Using a subsample (n = 371) of the Three-City cohort-where older adults provided information on diet and blood biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years-we tested for interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on CD, Alzheimer's disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99]) were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ-tocopherol concentrations (OR [95% CI] = 1.08 [1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in individuals with a neurogenesis-centred susceptibility.


Assuntos
Disfunção Cognitiva , Demência , Depressão , Hipocampo , Neurogênese , Estado Nutricional , Humanos , Idoso , Masculino , Feminino , Depressão/psicologia , Depressão/metabolismo , Depressão/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/epidemiologia , Demência/psicologia , Demência/epidemiologia , Demência/sangue , Demência/etiologia , Fatores de Risco , Hipocampo/metabolismo , Envelhecimento/psicologia , Idoso de 80 Anos ou mais , Cognição , Fatores Etários , Dieta/efeitos adversos , Envelhecimento Cognitivo/psicologia , Biomarcadores/sangue
6.
Stem Cell Rev Rep ; 20(5): 1325-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519702

RESUMO

BACKGROUND: Similar to induced pluripotent cells (iPSCs), induced neural stem cells (iNSCs) can be directly converted from human somatic cells such as dermal fibroblasts and peripheral blood monocytes. While previous studies have demonstrated the resemblance of iNSCs to neural stem cells derived from primary sources and embryonic stem cells, respectively, a comprehensive analysis of the correlation between iNSCs and their physiological counterparts remained to be investigated. METHODS: Nowadays, single-cell sequencing technologies provide unique opportunities for in-depth cellular benchmarking of complex cell populations. Our study involves the comprehensive profiling of converted human iNSCs at a single-cell transcriptomic level, alongside conventional methods, like flow cytometry and immunofluorescence stainings. RESULTS: Our results show that the iNSC conversion yields a homogeneous cell population expressing bona fide neural stem cell markers. Extracting transcriptomic signatures from published single cell transcriptomic atlas data and comparison to the iNSC transcriptome reveals resemblance to embryonic neuroepithelial cells of early neurodevelopmental stages observed in vivo at 5 weeks of development. CONCLUSION: Our data underscore the physiological relevance of directly converted iNSCs, making them a valuable in vitro system for modeling human central nervous system development and establishing translational applications in cell therapy and compound screening.


Assuntos
Sistema Nervoso Central , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Análise de Célula Única , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Transcriptoma/genética , Diferenciação Celular/genética , Reprogramação Celular , Perfilação da Expressão Gênica , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo
7.
Heliyon ; 10(2): e24753, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304771

RESUMO

Background: Neurotrophic activity constitutes a crucial factor in the recovery from neurological injuries and is impaired in neurodegenerative disorders. Preclinical studies of neurotrophic factors to improve outcome of neurodegenerative diseases have yielded promising results. However, due to the complexity of these therapies, the clinical translation of this approach was so far not successful and more feasible treatments with neurotrophic activity may be promising alternatives. Therefore, highly sensitive and robust assays for compound screening are required. New method: Nerve growth factor is known to induce Neurofilament-L (NF-L) expression in a rat pheochromocytoma cell line (PC12 cells) during early neuronal differentiation. We generated and characterized an enhanced green fluorescent protein (EGFP)-NF-L reporter PC12 cell line for the development of a cell-based assay (designated Neurofilament-L Bioassay) that allows straightforward quantification of early neuronal differentiation based on NF-L expression. Results: Using Cerebrolysin® as a role model for a pharmacological compound that stimulates neurotrophic activity in the central nervous system, the Neurofilament-L Bioassay was proved to be a robust, specific, and reproducible method. Comparison with existing methods: It was already shown that NF-L expression correlates with neurite outgrowth in PC12 cells. Currently, quantification of neurite outgrowth is the most commonly used method to evaluate neuronal differentiation in PC12 cells, an approach that is time-consuming and of high variability. Conclusions: This work describes the development of an EGFP-NF-L reporter PC12 cell-based assay as a robust and reproducible tool for "high throughput" compound screening for neurotrophic activity.

8.
PLoS One ; 18(10): e0291946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824474

RESUMO

Identification and quantitative segmentation of individual blood vessels in mice visualized with preclinical imaging techniques is a tedious, manual or semiautomated task that can require weeks of reviewing hundreds of levels of individual data sets. Preclinical imaging, such as micro-magnetic resonance imaging (µMRI) can produce tomographic datasets of murine vasculature across length scales and organs, which is of outmost importance to study tumor progression, angiogenesis, or vascular risk factors for diseases such as Alzheimer's. Training a neural network capable of accurate segmentation results requires a sufficiently large amount of labelled data, which takes a long time to compile. Recently, several reasonably automated approaches have emerged in the preclinical context but still require significant manual input and are less accurate than the deep learning approach presented in this paper-quantified by the Dice score. In this work, the implementation of a shallow, three-dimensional U-Net architecture for the segmentation of vessels in murine brains is presented, which is (1) open-source, (2) can be achieved with a small dataset (in this work only 8 µMRI imaging stacks of mouse brains were available), and (3) requires only a small subset of labelled training data. The presented model is evaluated together with two post-processing methodologies using a cross-validation, which results in an average Dice score of 61.34% in its best setup. The results show, that the methodology is able to detect blood vessels faster and more reliably compared to state-of-the-art vesselness filters with an average Dice score of 43.88% for the used dataset.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Animais , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
9.
Mol Nutr Food Res ; : e2300271, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876144

RESUMO

SCOPE: Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS: This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS: A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.

10.
Front Aging Neurosci ; 15: 1140708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600518

RESUMO

Introduction: Aging is in general associated with a decline in cognitive functions. Looking more closely, there is a huge heterogeneity in the extent of cognitive (dys-)abilities in the aged population. It ranges from the population of resistant, resilient, cognitively unimpaired individuals to patients with severe forms of dementias. Besides the known genetic, environmental and life style factors that shape the cognitive (dys-)abilities in aging, the underlying molecular mechanisms and signals related to cognitive heterogeneity are completely unknown. One putative mechanism underlying cognitive heterogeneity might be neuroinflammation, exerted through microglia, the brain's innate immune cells, as neuroinflammation is central to brain aging and neurodegenerative diseases. Recently, leukotrienes (LTs), i.e., small lipid mediators of inflammation produced by microglia along aging and neurodegeneration, got in the focus of geroscience as they might determine cognitive dysfunctions in aging. Methods: Here, we analyzed the brain's expression of key components of the LT synthesis pathway, i.e., the expression of 5-lipoxygenase (5-Lox), the key enzyme in LT production, and 5-lipoxygenase-activating protein (FLAP) in young and aged rats. More specifically, we used a cohort of rats, which, although grown up and housed under identical conditions, developed into aged cognitively unimpaired and aged cognitively impaired traits. Results: Expression of 5-Lox was increased within the brain of aged rats with the highest levels detected in cognitively impaired animals. The number of microglia cells was higher in the aged compared to the young brains with, again, the highest numbers of 5-Lox expressing microglia in the aged cognitively impaired rats. Remarkably, lower cognitive scores in the aged rats associated with higher numbers of 5-Lox positive microglia in the animals. Similar data were obtained for FLAP, at least in the cortex. Our data indicate elevated levels of the LT system in the brain of cognitively impaired animals. Discussion: We conclude that 5-Lox expressing microglia potentially contribute to the age-related cognitive decline in the brain, while low levels of the LT system might indicate and foster higher cognitive functions and eventually cognitive reserve and resilience in aging.

11.
Front Mol Biosci ; 10: 1196083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457829

RESUMO

Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.

12.
Front Physiol ; 14: 1151495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143930

RESUMO

Introduction: Pericytes (PCs) are specialized cells located abluminal of endothelial cells on capillaries, fulfilling numerous important functions. Their potential involvement in wound healing and scar formation is achieving increasing attention since years. Thus, many studies investigated the participation of PCs following brain and spinal cord (SC) injury, however, lacking in-depth analysis of lesioned optic nerve (ON) tissue. Further, due to the lack of a unique PC marker and uniform definition of PCs, contradicting results are published. Methods: In the present study the inducible PDGFRß-P2A-CreERT2-tdTomato lineage tracing reporter mouse was used to investigate the participation and trans-differentiation of endogenous PC-derived cells in an ON crush (ONC) injury model, analyzing five different post lesion time points up to 8 weeks post lesion. Results: PC-specific labeling of the reporter was evaluated and confirmed in the unlesioned ON of the reporter mouse. After ONC, we detected PC-derived tdTomato+ cells in the lesion, whereof the majority is not associated with vascular structures. The number of PC-derived tdTomato+ cells within the lesion increased over time, accounting for 60-90% of all PDGFRß+ cells in the lesion. The presence of PDGFRß+tdTomato- cells in the ON scar suggests the existence of fibrotic cell subpopulations of different origins. Discussion: Our results clearly demonstrate the presence of non-vascular associated tdTomato+ cells in the lesion core, indicating the participation of PC-derived cells in fibrotic scar formation following ONC. Thus, these PC-derived cells represent promising target cells for therapeutic treatment strategies to modulate fibrotic scar formation to improve axonal regeneration.

13.
Aging (Albany NY) ; 15(3): 630-649, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36734880

RESUMO

In Alzheimer's disease (AD), platelets become dysfunctional and might contribute to amyloid beta deposition. Here, we depleted platelets in one-year-old APP Swedish PS1 dE9 (APP-PS1) transgenic mice for five days, using intraperitoneal injections of an anti-CD42b antibody, and assessed changes in cerebral amyloidosis, plaque-associated neuritic dystrophy and gliosis. In APP-PS1 female mice, platelet depletion shifted amyloid plaque size distribution towards bigger plaques and increased neuritic dystrophy in the hippocampus. In platelet-depleted females, plaque-associated Iba1+ microglia had lower amounts of fibrillar amyloid beta cargo and GFAP+ astrocytic processes showed a higher overlap with thioflavin S+ amyloid plaques. In contrast to the popular hypothesis that platelets foster plaque pathology, our data suggest that platelets might limit plaque growth and attenuate plaque-related neuritic dystrophy at advanced stages of amyloid plaque pathology in APP-PS1 female mice. Whether the changes in amyloid plaque pathology are due to a direct effect on amyloid beta deposition or are a consequence of altered glial function needs to be further elucidated.


Assuntos
Doença de Alzheimer , Camundongos , Feminino , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Placa Amiloide/patologia , Camundongos Transgênicos , Modelos Animais de Doenças
14.
J Neurotrauma ; 40(9-10): 999-1006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200629

RESUMO

The use of biomarkers in spinal cord injury (SCI) research has evolved rapidly in recent years whereby most studies focused on the acute post-injury phase. Since SCI is characterized by persisting neurological impairments, the question arises whether blood biomarkers remain altered during the subacute post-injury time. Sample collection in the subacute phase might provide a better insight in the ongoing SCI specific molecular mechanism with fewer confounding factors compared with the acute phase where, amongst other complications, individuals receive a substantial amount of medication. This study aimed to determine if the temporal dynamics of serum biomarkers of neurodegeneration differ between individuals depending on their extent of neurological recovery in the transition phase between acute and chronic SCI. We performed a secondary analysis of biomarkers in patients with SCI (n = 41) who were treated at a level I trauma center in Germany. Patients with cervical or thoracic SCI regardless of injury severity were included. Blood samples were collected in the acute phase (1-4 days post-injury), and after 30 and 120 days post-injury. Serum protein levels of glial fibrillary acidic protein (GFAP) and neurofilament light protein (NfL) were determined for each time-point of sample collection using R-Plex Assays (Meso Scale Discovery). Linear mixed models were used to evaluate the trajectory of GFAP and NfL over time. Fixed effects of time, neurological recovery, and injury severity, along with the recovery-by-time interaction, were included in models with random slopes and intercepts. GFAP levels increase during the first days after SCI and decrease in subacute to chronic stages. Notably, the trajectory of GFAP over time is significantly associated with the extent of neurological recovery during the transition from acute to chronic SCI with a steeper decline in individuals who recovered better. Serum levels of NfL continue to rise significantly until Day 30 followed by a decrease afterwards, independent of neurological recovery. The trajectory of serum GFAP levels qualifies as a prognostic biomarker for neurological recovery, and facilitates monitoring of disease progression in the sub-acute post-injury phase.


Assuntos
Filamentos Intermediários , Traumatismos da Medula Espinal , Humanos , Proteína Glial Fibrilar Ácida , Biomarcadores , Proteínas de Neurofilamentos
15.
Nutrients ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364950

RESUMO

The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut−brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case−control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.


Assuntos
Eixo Encéfalo-Intestino , Disfunção Cognitiva , Humanos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Disfunção Cognitiva/metabolismo , Metabolômica
16.
Pharmaceutics ; 14(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145606

RESUMO

The hematopoietic granulocyte-colony stimulating growth factor (G-CSF, filgrastim) is an approved drug in hematology and oncology. Filgrastim's potential in neurodegenerative disorders is gaining increasingly more attention, as preclinical and early clinical studies suggest it could be a promising treatment option. G-CSF has had a tremendous record as a safe drug for more than three decades; however, its effects upon the central nervous system (CNS) are still not fully understood. In contrast to conceptual long-term clinical application with lower dosing, our present pilot study intends to give a first insight into the molecular effects of a single subcutaneous (s.c.) high-dose G-CSF application upon different regions of the rodent brain. We analyzed mRNA-and in some instances-protein data of neurogenic and non-neurogenic differentiation markers in different regions of rat brains five days after G-CSF (1.3 mg/kg) or physiological saline. We found a continuous downregulation of several markers in most brain regions. Remarkably, cerebellum and hypothalamus showed an upregulation of different markers. In conclusion, our study reveals minor suppressive or stimulatory effects of a single exceptional high G-CSF dose upon neurogenic and non-neurogenic differentiation markers in relevant brain regions, excluding unregulated responses or unexpected patterns of marker expression.

17.
J Immunol ; 209(7): 1272-1285, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165202

RESUMO

Peripheral immune cell infiltration into the brain is a prominent feature in aging and various neurodegenerative diseases such as Alzheimer's disease (AD). As AD progresses, CD8+ T cells infiltrate into the brain parenchyma, where they tightly associate with neurons and microglia. The functional properties of CD8+ T cells in the brain are largely unknown. To gain further insights into the putative functions of CD8+ T cells in the brain, we explored and compared the transcriptomic profile of CD8+ T cells isolated from the brain and blood of transgenic AD (APPswe/PSEN1dE9, line 85 [APP-PS1]) and age-matched wild-type (WT) mice. Brain CD8+ T cells of APP-PS1 and WT animals had similar transcriptomic profiles and substantially differed from blood circulating CD8+ T cells. The gene signature of brain CD8+ T cells identified them as tissue-resident memory (Trm) T cells. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the significantly upregulated genes revealed overrepresentation of biological processes involved in IFN-ß signaling and the response to viral infections. Furthermore, brain CD8+ T cells of APP-PS1 and aged WT mice showed similar differentially regulated genes as brain Trm CD8+ T cells in mouse models with acute virus infection, chronic parasite infection, and tumor growth. In conclusion, our profiling of brain CD8+ T cells suggests that in AD, these cells exhibit similar adaptive immune responses as in other inflammatory diseases of the CNS, potentially opening the door for immunotherapy in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Células T de Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Transcriptoma
18.
Mol Psychiatry ; 27(8): 3425-3440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794184

RESUMO

Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.


Assuntos
Depressão , Neurogênese , Humanos , Depressão/metabolismo , Estudos de Coortes , Neurogênese/fisiologia , Hipocampo , Dieta , Envelhecimento
19.
J Neurotrauma ; 39(23-24): 1678-1686, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35607859

RESUMO

Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.


Assuntos
Traumatismos da Medula Espinal , Fator A de Crescimento do Endotélio Vascular , Humanos , Qualidade de Vida , Recuperação de Função Fisiológica , Eosinófilos , Medula Espinal
20.
Trials ; 23(1): 245, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365190

RESUMO

BACKGROUND: The pathological mechanism in acute spinal cord injury (SCI) is dual sequential: the primary mechanical lesion and the secondary injury due to a cascade of biochemical and pathological changes initiated by the primary lesion. Therapeutic approaches have focused on modulating the mechanisms of secondary injury. Despite extensive efforts in the treatment of SCI, there is yet no causal, curative treatment approach available. Extracorporeal shock wave therapy (ESWT) has been successfully implemented in clinical use. Biological responses to therapeutic shock waves include altered metabolic activity of various cell types due to direct and indirect mechanotransduction leading to improved migration, proliferation, chemotaxis, modulation of the inflammatory response, angiogenesis, and neovascularization, thus inducing rather a regeneration than repair. The aim of this clinical study is to investigate the effect of ESWT in humans within the first 48 h after an acute traumatic SCI, with the objective to intervene in the secondary injury phase in order to reduce the extent of neuronal loss. METHODS: This two-arm three-stage adaptive, prospective, multi-center, randomized, blinded, placebo-controlled study has been initiated in July 2020, and a total of 82 patients with acute traumatic SCI will be recruited for the first stage in 15 participating hospitals as part of a two-armed three-stage adaptive trial design. The focused ESWT (energy flux density: 0.1-0.19 mJ/mm2, frequency: 2-5 Hz) is applied once at the level of the lesion, five segments above/below, and on the plantar surface of both feet within the first 48 h after trauma. The degree of improvement in motor and sensory function after 6 months post-injury is the primary endpoint of the study. Secondary endpoints include routine blood chemistry parameters, the degree of spasticity, the ability to walk, urological function, quality of life, and the independence in everyday life. DISCUSSION: The application of ESWT activates the nervous tissue regeneration involving a multitude of various biochemical and cellular events and leads to a decreased neuronal loss. ESWT might contribute to an improvement in the treatment of acute traumatic SCI in future clinical use. TRIAL REGISTRATION: ClinicalTrials.gov NCT04474106.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Traumatismos da Medula Espinal , Método Duplo-Cego , Humanos , Mecanotransdução Celular , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensação , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA