Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 98(10): e14637, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30855449

RESUMO

BACKGROUND: Polaprezinc is clinically used for the treatment of gastric ulcers. It induces the mobilization of mesenchymal stem cells and the mRNA expression of insulin-like growth factor-1 in vascular endothelial cells in order to protect injured gastric tissue or skin. METHODS: The current study population included 50 patients with primary acute myocardial infarction (AMI). After percutaneous coronary intervention, the subjects were randomly divided into 2 groups, namely, the nonpolaprezinc and polaprezinc groups. Peripheral blood and urinary samples were collected in a specific time to analyze zinc concentration, cardiac enzymes, and the levels of the inflammation marker interleukin-6. To evaluate the cardiac function, echocardiography was performed upon admission to the hospital and at 9 months post-AMI. RESULTS: The urine and blood zinc levels of the polaprezinc group were higher compared with those of the non-polaprezinc group at 8 days after percutaneous coronary intervention. The mean interleukin-6/maximal creatine phosphokinase level was significantly reduced in the polaprezinc group (0.024 [0.003-0.066] vs. 0.076 [0.015-0.212], respectively; P = .045). In addition, echocardiography revealed that the ejection fraction of the nonpolaprezinc group was not significantly increased between day 3 and 9 months post-AMI (53 [49-60.8] vs. 59.5 [52-69.3], respectively; P = .015). However, a significant increase was detected in the ejection fraction of the polaprezinc group at the 2 time points (54 [51-57] vs. 62 [55-71], respectively; P < .01). CONCLUSIONS: The results of the present study suggest that polaprezinc has an anti-inflammatory effect and improves cardiac function after AMI.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Carnosina/análogos & derivados , Infarto do Miocárdio/terapia , Compostos Organometálicos/uso terapêutico , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Carnosina/uso terapêutico , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Intervenção Coronária Percutânea , Resultado do Tratamento , Zinco/sangue , Zinco/urina , Compostos de Zinco/uso terapêutico
2.
Clin J Gastroenterol ; 9(4): 243-51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27318996

RESUMO

Immunoglobulin light-chain (AL) amyloidosis is characterized by the deposition of insoluble fibrils composed of immunoglobulin light chains secreted by monoclonal plasma cells. Given the recent advances in the therapy of AL amyloidosis, it is important to diagnose this disease as early as possible. Herein, we describe the case of a 62-year-old man with hepatitis C virus (HCV)-related cirrhosis presenting with hematochezia. Colonoscopy showed multiple submucosal hematomas within the region ranging from the transverse colon to the sigmoid colon. Kappa immunoglobulin light-chain amyloid deposition was also detected. Bone marrow examination revealed a monoclonal abnormal plasma cell population. Thus, the patient was diagnosed with systemic immunoglobulin light-chain amyloidosis. The hematochezia was conservatively managed. However, because of liver failure caused by liver cirrhosis, the patient developed massive pleural effusion and died of respiratory failure. Postmortem examination revealed amyloid deposition in the esophagus, stomach, duodenum, ileum, descending colon, pancreas, heart, and lung. In these organs, amyloid deposition was limited to the vascular wall. We concluded that AL amyloidosis can present hematochezia arising from submucosal hematoma in the large colon before other systemic symptoms appear.


Assuntos
Amiloidose/complicações , Hemorragia Gastrointestinal/etiologia , Cadeias Leves de Imunoglobulina/análise , Amiloidose/diagnóstico , Biópsia , Colo/patologia , Doenças do Colo/etiologia , Colonoscopia , Evolução Fatal , Hematoma/etiologia , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
4.
Hum Gene Ther ; 21(10): 1327-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20497036

RESUMO

The regenerative potential of bone marrow-derived endothelial progenitor cells (EPCs) has been adapted for the treatment of myocardial and limb ischemia via ex vivo expansion. We sought to enhance EPC function by the efficient genetic modification of EPCs in a rat model of myocardial infarction. Peripheral blood EPCs were expanded and transduced, using adeno-associated virus (AAV). AAV-mediated EPC transduction efficacy was 23 ± 1.2%, which was improved by 4.0- to 7.2-fold after pretreatment with the tyrosine kinase inhibitor genistein. Adult rats (n = 7 in each group) underwent myocardial infarction by left anterior descending coronary artery occlusion, and received autologous EPCs transduced by AAV-IGF-1 or AAV-lacZ into the periinfarct area. Echocardiography demonstrated that cardiac function in the IGF-1-EPC group was significantly improved compared with the lacZ-EPC control group 12 weeks after myocardial infarction. In addition, IGF-1-expressing EPCs led to reduced cardiac apoptosis, increased cardiomyocyte proliferation, and increased numbers of capillaries in the periinfarct area. AAV expression was limited to the targeted heart region only. Pretreatment with genistein markedly improved AAV transduction of EPCs. IGF-1-expressing EPCs exhibit favorable cell-protective effects with tissue-limited expression in rat heart postinfarction.


Assuntos
Dependovirus/genética , Células Endoteliais/citologia , Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Capilares , Vasos Coronários/patologia , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/metabolismo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Genisteína/farmacologia , Testes de Função Cardíaca , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Transdução Genética , Transplante Autólogo
5.
J Mol Cell Cardiol ; 48(6): 1071-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19850049

RESUMO

Insulin-like growth factor-1 (IGF-1) has been found to exert favorable effects on angiogenesis in prior animal studies. This study explored the long-term effect of IGF-1 on angiogenesis using microSPECT-CT in infarcted rat hearts after delivering human IGF-1 gene by adeno-associated virus (AAV). Myocardial infarction (MI) was induced in Sprague-Dawley rats by ligation of the proximal anterior coronary artery and a total of 10(11) AAV-CMV-lacZ (control) or IGF-1 vectors were injected around the peri-infarct area. IGF-1 expression by AAV stably transduced heart muscle for up to 16 weeks post-MI and immunohistochemistry revealed a remarkable increase in capillary density. A (99m)Tc-labeled RGD peptide (NC100692, GE Healthcare) was used to assess temporal and regional alpha(v) integrin activation. Rats were injected with NC100692 followed by (201)Tl chloride and in vivo microSPECT-CT imaging was performed. After imaging, hearts were excised and cut for quantitative gamma-well counting (GWC). NC100692 retention was significantly increased in hypoperfused regions of both lacZ and IGF-1 rats at 4 and 16 weeks post-MI. Significantly higher activation of alpha(v) integrin was observed in IGF-1 rats at 4 weeks after treatment compared with control group, although the activation was lower in the IGF-1 group at 16 weeks. Local IGF-1 gene delivery by AAV can render a sustained transduction and improve cardiac function post-MI. IGF-1 expression contributes to enhanced alpha(v) integrin activation which is linked to angiogenesis. MicroSPECT-CT imaging with (99m)Tc-NC100692 and quantitative GWC successfully assessed differences in alpha(v) integrin activation between IGF-1-treated and control animals post-MI.


Assuntos
Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/biossíntese , Infarto do Miocárdio/metabolismo , Neovascularização Patológica , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Dependovirus/genética , Humanos , Integrina alfaV/metabolismo , Infarto do Miocárdio/patologia , Oligopeptídeos/química , Ratos , Ratos Sprague-Dawley , Tecnécio/farmacologia , Fatores de Tempo
6.
Hum Gene Ther ; 20(9): 1005-12, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19499975

RESUMO

Recombinant adeno-associated virus (rAAV) vectors represent a promising approach to gene delivery for clinical use. Published data indicate that rAAV vector genomes persist in vivo as episomal chromatin in the skeletal muscle of nonhuman primates. In this study, we assessed the interconnection between the transcription factor cyclic AMP response element-binding protein (CREB) and recombinant AAV serotype 2 vector genomes after transduction in vitro and in vivo. rAAV-mediated myocyte transduction was potently blocked in the hearts of mice expressing CREB-S133A, which is a CREB-S133A dominant-negative mutant. Isoproterenol, a strong CREB activator, prominently increased rAAV transduction and the increase was abrogated by silencing the CREB gene with small interfering RNA. In addition, rAAV infection of muscle cells mildly but significantly induced CREB protein phosphorylation at serine-133, and was capable of stimulating CREB-dependent transcription from a reporter plasmid. Using chromatin immunoprecipitation and immunoblotting assays, both CREB and p300 were found to physically associate with two different rAAV genomes. Accordingly, CREB/p300 appears to have a role in rAAV transduction to establish active vector transcription in heart muscle cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dependovirus/fisiologia , Vetores Genéticos , Miócitos Cardíacos/virologia , Recombinação Genética , Transdução Genética , Animais , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dependovirus/classificação , Dependovirus/genética , Dependovirus/metabolismo , Humanos , Immunoblotting , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos
7.
Int J Biomed Sci ; 4(3): 217-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23675093

RESUMO

Vascular endothelial cells (EC) have been targeted for the treatment of pathological conditions such as atherosclerosis, hypercholesterolemia, post-angioplasty restenosis and hypertension. Non-pathogenic adeno-associated virus (AAV) has been shown as a good gene delivery tool in a variety of cell lines as well as in animal models. However, AAV has been reported to induce less endothelial cell transduction. AAV vector alone transduced HUVEC much lower than other cell lines including Hela, PAC1, and C2C12. Preincubation of AAV vector with EC membrane specific peptides markedly increased AAV transduction of HUVEC. On the contrary, those peptides did not affect AAV expression in other cell types. These EC-specific peptides may be a strategy for enhancement of AAV mediated-gene expression.

8.
J Mol Cell Cardiol ; 42(2): 390-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17174322

RESUMO

Recombinant adeno-associated virus (rAAV)-based gene therapy represents a promising approach for the treatment of heart diseases. It has been shown that growth hormone (GH) exerts a favorable effect on cardiovascular function in clinical and animal studies. This study explores a chronic stage after myocardial infarction and the potential therapeutic effects of delivering a human GH gene by rAAV following coronary artery ligation in Sprague-Dawley rats. rAAV vectors stably transduced heart muscle for up to 22 weeks after myocardial infarction (MI). Overexpression of GH via rAAV vectors significantly improved not only cardiac function but also LV pathologic remodeling was attenuated post-MI compared to the control rAAV-lacZ injected group. rAAV-mediated expression of GH also resulted in a significant induction of several angiogenic genes such as eNOS, VEGF and bFGF in rat hearts. Immunohistochemistry revealed an increase in capillary density and proliferation of cells and a decrease in the number of TUNEL-positive cardiomyocytes in the rAAV-GH group. Based on these data, we conclude that rAAV-mediated GH delivery can render a long-term transduction in the infarcted heart and improve cardiac function through promoting angiogenesis and proliferation of cells and protecting cardiomyocytes from ischemia-induced apoptosis.


Assuntos
Apoptose , Dependovirus , Hormônio do Crescimento/biossíntese , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Animais , Apoptose/genética , Proliferação de Células , Terapia Genética , Hormônio do Crescimento/genética , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/genética , Ratos , Ratos Sprague-Dawley , Transdução Genética
9.
Nat Med ; 11(11): 1197-204, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244652

RESUMO

Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow-derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.


Assuntos
Terapia Genética , Coração/embriologia , Miocárdio/metabolismo , Transdução de Sinais , Transativadores/uso terapêutico , Doença Aguda , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Doença Crônica , Modelos Animais de Doenças , Ecocardiografia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Humanos , Camundongos , Camundongos Mutantes , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Função Ventricular Esquerda/fisiologia
10.
J Mol Cell Cardiol ; 38(5): 799-802, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15850573

RESUMO

We have tested the feasibility of using recombinant adeno-associated virus (rAAV) vectors as a tool for labeling bone marrow (BM) cells in vivo. We infected BM cells of donor FVB mice with rAAV vectors containing the lacZ gene for 2 h. We then injected the rAAV-infected cells to lethally irradiated-recipient FVB mice. Peripheral blood (PB), BM and spleen harvested at 4 weeks after BM transplant (BMT) demonstrated stable engraftment in beta-galactosidase (beta-gal) expression. In contrast, Dil-labeling displayed only a faint signal 4 weeks after BMT. To analyze the kinetics of BM cells, we injected vascular endothelial growth factor (VEGF), which promotes mobilization of BM cells. Administration of VEGF protein significantly increased the rAAV-mediated beta-gal expression in PB and BM of recipient mice. Moreover, when myocardial infarction was induced in BMT mice, the ischemic area exhibited significant beta-gal staining in rAAV-labeled BMT group. rAAV vectors programmed stable transduction in BM cells in vivo through rapid infection. rAAV appears to represent a useful vector for labeling BM cells ex vivo prior to BMT for analysis of cardiovascular therapeutic purposes.


Assuntos
Células da Medula Óssea/virologia , Dependovirus/genética , Vetores Genéticos , Animais , Sequência de Bases , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , DNA Viral/genética , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Óperon Lac/efeitos dos fármacos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
J Clin Invest ; 115(2): 326-38, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15690083

RESUMO

We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Coração/fisiologia , Células-Tronco Multipotentes/transplante , Infarto do Miocárdio/terapia , Regeneração/fisiologia , Adulto , Animais , Células da Medula Óssea/citologia , Linhagem da Célula/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Multipotentes/fisiologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Nus
12.
Circulation ; 108(25): 3115-21, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14676142

RESUMO

BACKGROUND: We hypothesized that estrogen-induced acceleration of reendothelialization might be mediated in part by effects involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells (EPCs). METHODS AND RESULTS: Carotid injury was induced in ovariectomized wild-type mice receiving either 17beta-estradiol or placebo. Estradiol treatment significantly accelerated reendothelialization of injured arterial segments within 7 days and resulted in a significant reduction of medial thickness 14 and 21 days after the injury. Significant increases in circulating EPCs 3 days after the injury were observed in the estradiol group compared with placebo-treated mice. These data were further supported by fluorescence-activated cell sorting analysis, which disclosed a significant increase in Sca-1/Flk-1-positive cells in estradiol versus control mice. To evaluate the effects of estradiol on bone marrow-derived EPC incorporation at sites of reendothelialization, carotid injury was established in ovariectomized wild-type mice transplanted with bone marrow from transgenic donors expressing beta-galactosidase transcriptionally regulated by the Tie-2 promoter. Significantly greater numbers of X-gal-positive cells were observed at reendothelialized areas in the estradiol group 3 days after injury as compared with placebo. Fluorescent immunohistochemistry 14 days after the injury documented a marked increase in cells expressing both beta-gal, indicating bone marrow origin and Tie-2 expression, and isolectin B4, also indicating endothelial lineage, in the estradiol group compared with control. In contrast, estradiol did not accelerate reendothelialization or augment EPC mobilization into the peripheral circulation after injury in endothelial nitric oxide synthase-deficient mice (eNOS-/-). Furthermore, estradiol exhibited direct stimulatory effects on EPC mitogenic and migration activity and inhibited EPC apoptosis. CONCLUSIONS: Estradiol accelerates reendothelialization and attenuates medial thickening after carotid injury in part by augmenting mobilization and proliferation of bone marrow-derived EPCs and their incorporation into the recovering endothelium at the site of injury.


Assuntos
Arteriopatias Oclusivas/tratamento farmacológico , Células da Medula Óssea/fisiologia , Endotélio Vascular/citologia , Estradiol/uso terapêutico , Óxido Nítrico Sintase/fisiologia , Células-Tronco/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Artérias Carótidas/citologia , Artérias Carótidas/patologia , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/etiologia , Estenose das Carótidas/patologia , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/patologia , Endotélio Vascular/fisiologia , Estradiol/farmacologia , Feminino , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Regeneração , Células-Tronco/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 305(4): 806-10, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12767901

RESUMO

Cardiomyocyte hypertrophy is observed in various cardiovascular diseases and causes heart failure. We here examined the role of small GTP-binding proteins of Rho family in phenylephrine (PE)-or leukocyte inhibitory factor (LIF)-induced hypertrophic morphogenesis of cultured neonatal rat cardiomyocytes. Both LIF and PE increased cell size of cardiomyocytes. LIF induced an increase in the length/width ratio of cardiomyocytes, while PE did not change the ratio. Adenoviral gene transfer of constitutively active mutants of Cdc42 increased the length/width ratio of cardiomyocytes and dominant negative mutants of Cdc42 conversely inhibited LIF-induced cell-elongation, while mutants of RhoA and Rac1 did not affect the length/width ratio of cardiomyocytes. These results suggest that Cdc42, but not RhoA and Rac1, is involved in LIF-induced sarcomere assembly in series in cardiomyocytes.


Assuntos
Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Sarcômeros/ultraestrutura , Proteína cdc42 de Ligação ao GTP/fisiologia , Adenoviridae/genética , Animais , Células Cultivadas , Vetores Genéticos , Linfocinas/farmacologia , Miócitos Cardíacos/citologia , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia
14.
Cytokine ; 18(4): 179-83, 2002 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12126639

RESUMO

Many studies have indicated that oxidative stress induces apoptosis in cardiomyocytes, but its mechanism remains unknown. We examined whether tumor necrosis factor-alpha (TNF-alpha) is involved in oxidative stress-induced cardiomyocyte apoptosis. Pretreatment with anti-TNF-alpha antibody significantly decreased the number of H(2)O(2)-induced TUNEL-positive cardiomyocytes. Expression of TNF-alpha gene was upregulated by H(2)O(2), and H(2)O(2) mildly but significantly increased the concentration of TNF-alpha in the culture medium. Although neither low dose of H(2)O(2) nor TNF-alpha induced apoptosis, stimulation with H(2)O(2) and TNF-alpha synergistically increased apoptosis. These results suggest that oxidative stress induces apoptosis of cardiac myocytes partly through TNF-alpha.


Assuntos
Apoptose , Miocárdio/patologia , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Marcação In Situ das Extremidades Cortadas , Miocárdio/citologia , Estresse Oxidativo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Regulação para Cima
15.
J Biol Chem ; 277(21): 18979-85, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11889137

RESUMO

Recombinant adeno-associated viral (rAAV) vectors hold promise for delivering genes for heart diseases, but cardiac-specific expression by the use of rAAV has not been demonstrated. To achieve this goal rAAV vectors were generated expressing marker or potentially therapeutic genes under the control of the cardiac muscle-specific alpha myosin heavy chain (MHC) gene promoter. The rAAV-MHC vectors expressed in primary cardiomyocytes with similar kinetics to rAAV-CMV; however, expression by the rAAV-MHC vectors was restricted to cardiomyocytes. rAAV vectors have low cytotoxicity, and it is demonstrated here that rAAV fails to induce apoptosis in cardiomyocytes compared with a recombinant adenoviral vector. rAAV-MHC or rAAV-CMV vectors were administered to mice to determine the specificity of expression in vivo. The rAAV-MHC vectors expressed specifically in cardiomyocytes, whereas the control rAAV-CMV vector expressed in heart, skeletal muscle, and brain. rAAV-MHC transduction resulted in long term (16 weeks) expression of human growth hormone following intracardiac, yet not intramuscular, injection. Finally, we defined the minimal MHC enhancer/promoter sequences required for specific and robust in vivo expression in the context of a rAAV vector. For the first time we describe a panel of rAAV vectors capable of long term cardiac specific expression of intracellular and secreted proteins.


Assuntos
Dependovirus/genética , Regulação da Expressão Gênica/genética , Vetores Genéticos , Miocárdio/metabolismo , Transdução Genética , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Camundongos , Ratos
16.
Hypertension ; 39(2): 233-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11847190

RESUMO

Mechanical stress activates various hypertrophic responses, including activation of mitogen-activated protein kinases (MAPKs) in cardiac myocytes. Stretch activated extracellular signal-regulated kinases partly through secreted humoral growth factors, including angiotensin II, whereas stretch-induced activation of c-Jun NH(2)-terminal kinases and p38 MAPK was independent of angiotensin II. In this study, we examined the role of integrin signaling in stretch-induced activation of p38 MAPK in cardiomyocytes of neonatal rats. Overexpression of the tumor suppressor PTEN, which inhibits outside-in integrin signaling, strongly suppressed stretch-induced activation of p38 MAPK. Overexpression of focal adhesion kinase (FAK) antagonized the effects of PTEN, and both tyrosine residues at 397 and 925 of FAK were necessary for its effects. Stretch induced tyrosine phosphorylation and activation of FAK and Src. Stretch-induced activation of p38 MAPK was abolished by overexpression of FAT and CSK, which are inhibitors of the FAK and Src families, respectively, and was suppressed by overexpression of a dominant-negative mutant of Ras. Mechanical stretch-induced increase in protein synthesis was suppressed by SB202190, a p38 MAPK inhibitor. These results suggest that mechanical stress activates p38 MAPK and induces cardiac hypertrophy through the integrin-FAK-Src-Ras pathway in cardiac myocytes.


Assuntos
Integrinas/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Proteína Tirosina Quinase CSK , Células Cultivadas , Ativação Enzimática , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Ventrículos do Coração/citologia , Ventrículos do Coração/enzimologia , Proteínas Quinases Ativadas por Mitógeno/genética , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Wistar , Estresse Mecânico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tirosina/genética , Tirosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas ras/metabolismo , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...