Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 13(1): 419, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891180

RESUMO

OBJECTIVE: Streptococcus pyogenes (Group A Streptococcus; GAS) causes a variety of infections that include life-threatening, severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS), with > 30% mortality rate, despite effective antibiotics and treatment options. STSS clinical isolates highly express streptolysin O (SLO), a member of a large family of pore-forming toxins called cholesterol-dependent cytolysins (CDCs). SLO is an important toxic factor for GAS and may be an effective therapeutic target for the treatment of STSS. Our aim was to identify a monoclonal antibody (mAb) that reacts with SLO and has therapeutic potential for STSS treatment. RESULTS: We focused on mAbs that had originally been established as neutralizing reagents to perfringolysin O (PFO), another member of the CDC family, as some cross-reactivity with SLO had been reported. Here, we confirmed cross-reactivity of an anti-PFO mAb named HS1 with SLO. In vitro analysis revealed that HS1 mAb sufficiently prevented human neutrophils from being killed by STSS clinical isolates. Furthermore, prophylactic and therapeutic injection of HS1 mAb into C57BL/6 mice significantly improved the survival rate following lethal infection with an STSS clinical isolate. These results highlight the therapeutic potential of HS1 mAb for STSS treatment.


Assuntos
Choque Séptico , Infecções Estreptocócicas , Animais , Anticorpos Monoclonais , Proteínas de Bactérias , Toxinas Bacterianas , Proteínas Hemolisinas , Camundongos , Camundongos Endogâmicos C57BL , Choque Séptico/tratamento farmacológico , Choque Séptico/prevenção & controle , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes , Estreptolisinas
2.
Cell Rep ; 27(2): 561-571.e6, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970258

RESUMO

Severe invasive group A Streptococcus (GAS) infection evades anti-bacterial immunity by attenuating the cellular components of innate immune responses. However, this loss of protection is compensated for by interferon (IFN)-γ-producing immature myeloid cells (γIMCs), which are selectively recruited upon severe invasive GAS infection in mice. Here, we demonstrate that γIMCs provide this IFN-γ-mediated protection by sequentially sensing GAS through two distinct pattern recognition receptors. In a mouse model, GAS is initially recognized by Toll-like receptor 2 (TLR2), which promptly induces interleukin (IL)-6 production in γIMCs. γIMC-derived IL-6 promotes the upregulation of a recently identified GAS-sensing receptor, macrophage-inducible C-type lectin (Mincle), in an autocrine or paracrine manner. Notably, blockade of γIMC-derived IL-6 abrogates Mincle expression, downstream IFN-γ production, and γIMC-mediated protection against severe invasive GAS infection. Thus, γIMCs regulate host protective immunity against severe invasive GAS infection via a TLR2-IL-6-Mincle axis.


Assuntos
Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Células Mieloides/imunologia , Infecções Estreptocócicas/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Imunidade Inata/imunologia , Interferon gama/imunologia , Interleucina-6/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...