Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 219: 115127, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549493

RESUMO

In this study, an anaerobic-aerobic coupling system under intermittent electrical stimulation was used to improve the biodegradation of synthetic wastewater containing fluoroquinolones (FQs). The effect of electrical stimulation on FQ removal performance is more pronounced with appropriate voltage and hydraulic retention time. In addition, the combination of anaerobic-anodic and aerobic-cathodic chambers is more conducive to improving the removal efficiency of FQs. Under 0.9 V, the removal efficiencies of ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were significantly improved in the anaerobic-anodic and aerobic-cathodic system. The contribution of the anaerobic/aerobic anodic chambers to FQ removal was greater than that of the anaerobic/aerobic cathodic chambers. Electrical stimulation selectively enriched electroactive bacteria related to biodegradation (Desulfovibrio and Terrimonas), antibiotic-resistant bacteria (Atopobium and Neochlamydia), and nitrifying bacteria (SM1A02 and Reyranella). This study indicated the potential effectiveness of intermittent electrical stimulation in treating fluoroquinolone-containing wastewater in a biofilm reactor. However, electrical stimulation led to an increase in mobile genetic elements , induced horizontal gene transfer and enriched resistant bacteria, which accelerated the spread of antibiotic-resistant genes (ARGs) in the system, indicating that the diffusion of ARGs remains a challenge.


Assuntos
Antibacterianos , Fluoroquinolonas , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/análise , Fluoroquinolonas/metabolismo , Águas Residuárias , Bactérias/genética , Bactérias/metabolismo , Estimulação Elétrica , Genes Bacterianos
2.
Environ Geochem Health ; 45(5): 2549-2565, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36036340

RESUMO

Dietary consumption of contaminated vegetables is the main route of human exposure to polycyclic aromatic hydrocarbons (PAHs). However, there is a lack of research on PAHs in vegetables from northwest China. In this study, the concentrations, sources, and risk assessment of PAHs in the soil and vegetables of Urumqi, an urbanized city in Xinjiang, China, were investigated. The total concentrations of 16 PAHs in soil and vegetable samples ranged 10.58-77.20 and 93.7-1071.8 ng/g, with average values of 2.86 and 242.76 ng/g, respectively. Among vegetable samples, the concentrations were in the order: leafy vegetables (299.08 ng/g) > fruits (192.65 ng/g) > vegetable roots (152.05 ng/g). The source apportionment of PAHs was identified using positive matrix factorization. The primary sources of PAHs in soil samples are oil spills, traffic emissions, coal combustion, and coke combustion. The main sources of PAHs in vegetable samples are oil spills and burning of grass, wood, coal, and coke. In soil samples, the ecological risk caused by PAHs is at a safe level, and the incremental lifetime cancer risks (ILCRs) of ingestion exposure exceed 1.0 × 10-6, which will pose potential risks to human body. The ILCRs of vegetable samples revealed that all groups had potential risks from onion and cabbage consumption (ILCRs > 1.0 × 10-6). In particular, adult women had a higher risk of cancer (ILCRs > 1.0 × 10-4). These results emphasize the importance of combating PAHs pollution in vegetable bases.


Assuntos
Coque , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Feminino , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Verduras , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco , Carvão Mineral/análise , Solo , China
3.
Sci Rep ; 12(1): 21448, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509833

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) will be ingested by people through different ways to threaten their health during play, so the environmental quality of the park directly affects the health of tourists and residents. Using eight typical parks in Urumqi in Northwest China as the study area, we used GC-MS to detect the PAHs content in the park surface soil and 10 common plants in the park in different seasons. The results showed that the content of PAHs in park soil in the summer was 5-6 times that in the winter, and the monomer PAHs in some park soil sampling points were higher than the soil pollution risk screening value. And the contamination level at these sampling sites was also higher compared to other sampling sites. In summer, the plants with high PAHs content in leaves are short herbs, while in winter, they are tall arbors. The PAHs of the park soil are mainly composed of high-cyclic aromatic hydrocarbons, and are mainly of traffic origin. The proportion of low-ring aromatic hydrocarbons in the winter was significantly higher than that in the summer. The source of PAHs in plants in summer is similar to that in soil, but the source of PAHs in plants in winter is more complex. The toxicity equivalent concentration method values of soil PAHs in South Park, Zhiwu Park, Shihua Park and Toutunhe Park were higher than that in other parks. The lifetime carcinogenic risk (ILCRs) values of some sampling points in these four parks in the summer were relatively high. The average ILCRs of adults and children in all parks reached a low-risk level in summer. The carcinogenic risk in children is much higher than that of adults.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise , Monitoramento Ambiental , Medição de Risco , Carcinógenos/análise , China
4.
Artigo em Inglês | MEDLINE | ID: mdl-36430083

RESUMO

Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Anaerobiose , Diclofenaco , Ibuprofeno , Poluentes Químicos da Água/análise , Ecossistema , Carbamazepina , Preparações Farmacêuticas
5.
Bioresour Technol ; 320(Pt B): 124371, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33186803

RESUMO

An electrically stimulated anaerobic-aerobic coupled system was developed to improve the biodegradation of refractory phenolics. Expected 4-nitrophenol, 2, 4-dinitrophenol, and COD removals in the system with aerobic cathodic and anaerobic anodic chambers were approximately 53.7%, 45.4%, 22.3% (intermittent mode) and 37.9%, 19.8%, 17.3% (continuous mode) higher than that in the control system (26.0 ± 6.4%, 30.7 ± 7.1%, 49.8 ± 3.0%). 2, 4-dichlorophenol removal in the system with aerobic anodic and anaerobic cathodic chambers was approximately 28.5% higher than that in the control system (71.4 ± 5.7%). The contribution of the aerobic cathodic/anodic chambers to the removal of phenolic compounds was higher than that of the anaerobic cathodic/anodic chambers. The species related to phenolic biodegradation (Rhodococcus, Achromobacter, PSB-M-3, and Sphingobium) were enriched in the cathodic and anodic chambers of the system. These results showed that intermittent electrical stimulation could be a potential alternative for the efficient degradation of refractory phenolics.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Biodegradação Ambiental , Estimulação Elétrica
6.
PLoS One ; 14(4): e0215615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31009503

RESUMO

Anaerobic ammonium oxidation is considered to be the most economical and low-energy biological nitrogen removal process. So far, anammox bacteria have not yet been purified from cultures. Some nitrogen-removing microorganisms cooperate to perform the anammox process. The objective of this research was to analyze the abundance and diversity of nitrogen-removing microorganisms in an anammox reactor started up with bulking sludge at room temperature. In this study, the ammonia-oxidizing archaea phylum Crenarchaeota was enriched from 9.2 to 53.0%. Nitrosomonas, Nitrosococcus, and Nitrosospira, which are ammonia-oxidizing bacteria, increased from 3.2, 1.7, and 0.1% to 12.8, 20.4, and 3.3%, respectively. Ca. Brocadia, Ca. Kuenenia, and Ca. Scalindua, which are anammox bacteria, were detected in the seeding sludge, accounting for 77.1, 11.5, and 10.6%. After cultivation, the dominant genus changed to Ca. Kuenenia, accounting for 82.0%. Nitrospirae, nitrite oxidation bacteria, decreased from 2.2 to 0.1%, while denitrifying genera decreased from 12.9 to 2.1%. The results of this study contribute to the understanding of nitrogen-removing microorganisms in an anammox reactor, thereby facilitating the improvement of such reactors. However, the physiological and metabolic functions of the ammonia-oxidizing archaea community in the anammox reactor need to be investigated in further studies.


Assuntos
Compostos de Amônio/metabolismo , Biodiversidade , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Esgotos/microbiologia , Anaerobiose , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Nitrosomonas/classificação , Nitrosomonas/metabolismo , Oxirredução , Densidade Demográfica , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
7.
Bioresour Technol ; 201: 1-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615496

RESUMO

Conductive carbon felts (Cf) were used as biofilm carriers in bioelectrochemical reactors to enhance the electrical stimulation on treatment of phenol-containing synthetic wastewater. In batch test, phenol biodegradation was accelerated under an optimum direct current (DC), which was 2mA for Cf biofilm carriers, lower than that for non-conductive white foam carriers. The stimulation effect was consistent with Adenosine Triphosphate contents in biofilms. The long-term operation further demonstrated that a high and stable phenol removal efficiency could be achieved with applied DC of 2mA, and intermittent DC application was better than continuous one, with phenol removal efficiency of over 97%. Although the quantities of whole microbial communities kept at a high level under all conditions, special microorganisms related with genera of Zoogloea and Desulfovibrio were distinctively enriched under intermittent applied DC pattern. This study shows that the electrical stimulation is potentially effective for biofilm reactors treating phenol-containing wastewater.


Assuntos
Biofilmes , Reatores Biológicos , Consórcios Microbianos/fisiologia , Fenóis/química , Águas Residuárias/química , Purificação da Água/métodos , Trifosfato de Adenosina/química , Biodegradação Ambiental , Carbono/química , Fibra de Carbono , Desulfovibrio/fisiologia , Estimulação Elétrica , Zoogloea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...