Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(9): 12519-12528, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052792

RESUMO

We propose a method to fabricate interference filters using Plasma Enhanced Chemical Vapor Deposition (PECVD) to reduce blue and near-infrared wavelengths that are inherent to LED lighting, but that have a negative impact on human health and the environment respectively. We developed a Si-rich silicon nitride (Si-rich SixNy) material, with a very high refractive index, a high extinction coefficient in the blue range and a very low extinction coefficient in the rest of the spectrum. We combined this Si-rich SixNy with silicon oxide (SiOx) to realize an LED interference filter. The use of a material with a selective absorbance and high refractive index allows a simple fabrication process of the filter composed of six layers only, even for a complex spectral response. Moreover, the filter response is uniform and tolerant to incidence angle variation. With this work, we demonstrate the high potential of PECVD technique for the fabrication of low cost and reproducible interference filters that could be used in various applications.

2.
J Nucl Med ; 57(9): 1460-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27151983

RESUMO

UNLABELLED: Small-animal nuclear imaging modalities have become essential tools in the development process of new drugs, diagnostic procedures, and therapies. Quantification of metabolic or physiologic parameters is based on pharmacokinetic modeling of radiotracer biodistribution, which requires the blood input function in addition to tissue images. Such measurements are challenging in small animals because of their small blood volume. In this work, we propose a microfluidic counting system to monitor rodent blood radioactivity in real time, with high efficiency and small detection volume (∼1 µL). METHODS: A microfluidic channel is built directly above unpackaged p-i-n photodiodes to detect ß-particles with maximum efficiency. The device is embedded in a compact system comprising dedicated electronics, shielding, and pumping unit controlled by custom firmware to enable measurements next to small-animal scanners. Data corrections required to use the input function in pharmacokinetic models were established using calibrated solutions of the most common PET and SPECT radiotracers. Sensitivity, dead time, propagation delay, dispersion, background sensitivity, and the effect of sample temperature were characterized. The system was tested for pharmacokinetic studies in mice by quantifying myocardial perfusion and oxygen consumption with (11)C-acetate (PET) and by measuring the arterial input function using (99m)TcO4 (-) (SPECT). RESULTS: Sensitivity for PET isotopes reached 20%-47%, a 2- to 10-fold improvement relative to conventional catheter-based geometries. Furthermore, the system detected (99m)Tc-based SPECT tracers with an efficiency of 4%, an outcome not possible through a catheter. Correction for dead time was found to be unnecessary for small-animal experiments, whereas propagation delay and dispersion within the microfluidic channel were accurately corrected. Background activity and sample temperature were shown to have no influence on measurements. Finally, the system was successfully used in animal studies. CONCLUSION: A fully operational microfluidic blood-counting system for preclinical pharmacokinetic studies was developed. Microfluidics enabled reliable and high-efficiency measurement of the blood concentration of most common PET and SPECT radiotracers with high temporal resolution in small blood volume.


Assuntos
Análise Química do Sangue/instrumentação , Dispositivos Lab-On-A-Chip , Tomografia por Emissão de Pósitrons/instrumentação , Radiometria/instrumentação , Compostos Radiofarmacêuticos/sangue , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Animais , Sistemas Computacionais , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Endogâmicos BALB C , Microquímica/instrumentação , Farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Materials (Basel) ; 9(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28773633

RESUMO

We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode's active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots' height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging.

4.
Opt Express ; 23(17): 22477-93, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368216

RESUMO

We have experimentally demonstrated broadband tuneable four-wave mixing in AlGaAs nanowires with the widths ranging between 400 and 650 nm and lengths from 0 to 2 mm. We performed a detailed experimental study of the parameters influencing the FWM performance in these devices (experimental conditions and nanowire dimensions). The maximum signal-to-idler conversion range was 100 nm, limited by the tuning range of the pump source. The maximum conversion efficiency, defined as the ratio of the output idler power to the output signal power, was -38 dB. In support of our explanation of the experimentally observed trends, we present modal analysis and group velocity dispersion numerical analysis. This study is what we believe to be a step forward towards realization of all-optical signal processing devices.

5.
Opt Express ; 23(2): 1073-80, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835867

RESUMO

Excimer (ultraviolet) laser-induced quantum well intermixing (UV-Laser-QWI) is an attractive technique for wafer level post-growth processing and fabrication of a variety of monolithically integrated photonic devices. The results of UV-Laser-QWI employed for the fabrication of multibandgap III-V semiconductor wafers have demonstrated the attractive character of this approach although the process accuracy and reproducibility have remained relatively weakly covered in related literature. We report on a systematic investigation of the reproducibility of this process induced with a KrF excimer laser. The influence of both the irradiation with different laser doses and the annealing temperatures on the amplitude of intermixing in InGaAs/InGaAsP/InP quantum well heterostructures has been evaluated based on the photoluminescence measurements. Under optimized conditions, the process allows to blue shift the bandgap of a heterostructure by more than 100 nm with a remarkable 5.3% relative standard deviation.

6.
Opt Express ; 23(4): 4377-84, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836474

RESUMO

This paper presents a method to locally fine tune silicon-on-insulator (SOI) device layer thickness for the fabrication of optimal silicon photonics devices. Very precise control of thickness can be achieved with a modified local oxidation of silicon (LOCOS) process. The fabrication process is robust, complementary metal-oxide-semiconductor (CMOS) compatible and has the advantage of creating vertical tapers (~5.3 µm long for ~210 nm of height) required for impedance matching between sections of different height. The technology is demonstrated by fabricating a TE-pass filter.

7.
Opt Express ; 21(20): 23145-59, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104229

RESUMO

A major issue in the fabrication of integrated Bragg grating filters in highly confined waveguides is the average effective index fluctuations caused by waveguide dimension variations. Lateral variations are caused by the sidewall roughness created during the etching process while vertical variations are coming from the wafer silicon layer thickness non-uniformity. Grating spectral distortions are known to result solely from the low spatial frequency components of these variations. As a result, in this work, we present an experimental method to quantify such relevant spatial components by stitching a hundred high-resolution scanning electron microscope images. Additionally, we propose two techniques to reduce, in the design, the phase noise impact on integrated Bragg gratings without relying on fabrication process improvements. More specifically, we show that the use of hybrid multimode/singlemode waveguides reduce by more than one order of magnitude the effect of sidewall roughness on integrated Bragg gratings while we show that the fabrication of ultra-compact gratings in spiral waveguides mitigate the impact of the silicon layer thickness variations.

8.
Opt Express ; 21 Suppl 1: A179-89, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389270

RESUMO

In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer design is inspired by the microstructure found in the firefly Photuris sp. The actual dimensions and material composition have been optimized to take into account the high refractive index of the GaN diode stack. This two-dimensional pattern contrasts other designs by its unusual profile, its larger dimensions and the fact that it can be tailored to an existing diode design rather than requiring a complete redesign of the diode geometry. The gain of light extraction reaches values up to 55% with respect to the reference unprocessed LED.


Assuntos
Vaga-Lumes/química , Gálio/química , Índio/química , Luz , Refratometria/instrumentação , Animais , Desenho de Equipamento , Semicondutores
9.
Lab Chip ; 12(22): 4683-92, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23000896

RESUMO

New radiotracer developments for nuclear medicine imaging require the analysis of blood as a function of time in small animal models. A microfluidic device was developed to monitor the radioactivity concentration in the blood of rats and mice in real time. The microfluidic technology enables a large capture solid angle and a reduction in the separation distance between the sample and detector, thus increasing the detection efficiency. This in turn allows a reduction of the required detection volume without compromising sensitivity, an important advantage with rodent models having a small total blood volume (a few ml). A robust fabrication process was developed to manufacture the microchannels on top of unpackaged p-i-n photodiodes without altering detector performance. The microchannels were fabricated with KMPR, an epoxy-based photoresist similar to SU-8 but with improved resistance to stress-induced fissuring. Surface passivation of the KMPR enables non-diluted whole blood to flow through the channel for up to 20 min at low speed without clotting. The microfluidic device was embedded in a portable blood counter with dedicated electronics, pumping unit and computer control software for utilisation next to a small animal nuclear imaging scanner. Experimental measurements confirmed model predictions and showed a 4- to 19-fold improvement in detection efficiency over existing catheter-based devices, enabling a commensurate reduction in sampled blood volume. A linear dose-response relationship was demonstrated for radioactivity concentrations typical of experiments with rodents. The system was successfully used to measure the blood input function of rats in real time after radiotracer injection.


Assuntos
Sangue/metabolismo , Teste de Materiais , Técnicas Analíticas Microfluídicas/instrumentação , Compostos Radiofarmacêuticos/farmacocinética , Animais , Sangue/diagnóstico por imagem , Eletrodos , Desenho de Equipamento , Fluordesoxiglucose F18/farmacocinética , Camundongos , Tomografia por Emissão de Pósitrons , Radiografia , Ratos , Tomografia Computadorizada de Emissão de Fóton Único , Água/química
10.
Opt Express ; 20(14): 15983-90, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772286

RESUMO

We report on the design, fabrication, and demonstration of waveguide coupled channel drop filters at 1550 nm, on a silicon-on-insulator (SOI) substrate. These devices rely on resonant power transfer from a bus waveguide to side-walled Bragg resonators with quarter-wave shifts in the middle. By employing a second mirror resonator, and a tap-off waveguide, reflections along the bus waveguide can be reduced, leading to realization of circulator-free resonance filters. These devices were fabricated on SOI using e-beam lithography and inductively coupled plasma (ICP) etching. Fabricated devices with two coupled cavities are demonstrated to have rejection ratios greater than 20 dB and 3-dB bandwidths of 110 GHz, close to the values predicted by numerical modeling. We also demonstrate power tap-off at resonance of around 16 dB.

11.
Opt Express ; 20(3): 2053-61, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330446

RESUMO

This paper presents a buried quad p-n junction (BQJ) photodetector fabricated with a HV (high-voltage) CMOS process. Multiple buried junction photodetectors are wavelength-sensitive devices developed for spectral analysis applications where a compact integrated solution is preferred over systems involving bulk optics or a spectrometer due to physical size limitations. The BQJ device presented here is designed for chip-based biochemical analyses using simultaneous fluorescence labeling of multiple analytes such as with advanced labs-on-chip or miniaturized photonics-based biosensors. Modeling and experimental measurements of the spectral response of the device are presented. A matrix-based method for estimating individual spectral components in a compound spectrum is described. The device and analysis method are validated via a test setup using individually modulated LEDs to simulate light from 4-component fluorescence emission.


Assuntos
Fotometria/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
12.
Nanotechnology ; 21(13): 134014, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208121

RESUMO

Semiconductor nanowaveguides are the key structure for light-guiding nanophotonics applications. Efficient guiding and confinement of single-mode light in these waveguides require high aspect ratio geometries. In these conditions, sidewall verticality becomes crucial. We fabricated such structures using a top-down process combining electron beam lithography and inductively coupled plasma (ICP) etching of hard masks and GaAs/AlGaAs semiconductors with Al concentrations varying from 0 to 100%. The GaAs/AlGaAs plasma etching was a single-step process using a Cl(2)/BCl(3)/Ar gas mixture with various fractions of N(2). Scanning electron microscope (SEM) observations showed that the presence of nitrogen generated the deposition of a passivation layer, which had a significant effect on sidewall slope. Near-ideal vertical sidewalls were obtained over a very narrow range of N(2), allowing the production of extremely high aspect ratios (>32) for 80 nm wide nanowaveguides.

13.
Lab Chip ; 10(1): 111-5, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024058

RESUMO

This article presents a device incorporating surface plasmon resonance (SPR) sensing and surface acoustic wave (SAW) actuation integrated onto a common LiNbO(3) piezoelectric substrate. The device uses Rayleigh-type SAW to provide active microfluidic mixing in the fluid above the SPR sensor. Validation experiments show that SAW-induced microfluidic mixing results in accelerated binding kinetics of an avidin-biotin assay. Results also show that, though SAW action causes a parasitic SPR response due to heat injection into the fluid, a relatively brief relaxation time following the SAW pulses allows the effect to dissipate, without affecting the overall assay response. Since both SPR sensors and SAW transducers can be fabricated simultaneously using low-cost microfabrication methods on a single substrate, the proposed design is well-suited to lab-on-chip applications.


Assuntos
Acústica/instrumentação , Técnicas Biossensoriais/métodos , Microfluídica/métodos , Nióbio/química , Óxidos/química , Ressonância de Plasmônio de Superfície/métodos , Avidina/química , Técnicas Biossensoriais/instrumentação , Biotina/química , Desenho de Equipamento , Microfluídica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Propriedades de Superfície , Temperatura , Transdutores
14.
Lab Chip ; 9(10): 1371-6, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19417903

RESUMO

We present a hybrid optical filter design that combines interference and absorbing components for enhanced fluorescence detection in miniaturized highly-integrated lab-on-a-chip devices. The filter is designed in such a way that the advantages of each technology are used to offset the disadvantages of the other. The filter is fabricated with microfabrication compatible processes and materials for monolithic integration with microelectronics and microfluidics devices. The particular embodiment of the filter described herein is designed to discriminate fluorescence emission at 650 nm from excitation at 532 nm. The 9-layer interference filter component is fabricated with alternating TiO(2) and SiO(2) thin-film layers and has an attenuation of -12.6 dB at 532 nm and -0.76 dB at 650 nm. The absorbing filter component is fabricated using a dyed photopolymer (KMPR + Orasol Red) having an attenuation of -32.6 dB at 532 nm and -1.28 dB at 650 nm. The total rejection ratio of the hybrid filter is 43 dB. The filter exhibits very low autofluorescence and performs equally well at off-axis incidence angles.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Óptica e Fotônica/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Dióxido de Silício , Titânio
16.
Biosens Bioelectron ; 24(6): 1667-73, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18845432

RESUMO

We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents.


Assuntos
Bioensaio/instrumentação , Técnicas Biossensoriais/instrumentação , Rim/citologia , Rim/fisiologia , Técnicas Biossensoriais/métodos , Linhagem Celular , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
17.
Biopolymers ; 90(3): 415-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18240142

RESUMO

During the last years native chemical ligation (NCL) gained in popularity as a method allowing the chemical synthesis of large peptides and entire proteins. NCL is particularly well-suited for chemoselective and nondenaturing attachment of biomolecules on solid substrates. In the present work, we show the feasibility of monitoring of peptide synthesis, NCL and its catalysis on silicon oxide modified gold surfaces by surface plasmon resonance (SPR). NCL of a model peptide-bradykinin thioester-was carried out and monitored with a custom-built SPR apparatus. Solid-phase produced bradykinin thioester was ligated to the surface in the presence of variable concentrations of 4-mercaptophenylacetic acid as transthioesterification catalyst. At catalyst concentration of 48 mM and above, the NCL reaction was maximal and identical to the reaction of the purified peptide-mercaptophenylacetic acid thioester. SPR curves indicate typical first-order kinetics with t(1/2) of 81 s for this aryl thioester, but of 104 min for the primary alkyl thioester.


Assuntos
Peptídeos/síntese química , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Sequência de Aminoácidos , Bradicinina/síntese química , Bradicinina/química , Ésteres , Cinética , Especificidade por Substrato
18.
Cell Mol Bioeng ; 1(4): 229-239, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21052479

RESUMO

Morphological changes occurring in individual cells largely influence the physiological functions of various cell layers. The control of barrier function of epithelia and endothelia is a prime example of processes highly dependent on cellular morphology and cell layer integrity. Here, we applied the surface plasmon resonance (SPR) technique to the quantification of cellular activity of an epithelial cell monolayer stimulated by angiotensin II. The analysis of the SPR signal shows reproducible concentration-dependent biphasic responses after cell activation with angiotensin II. Phase-contrast and confocal microscopy imaging was performed to link the SPR signal to molecular and global morphological remodeling. The SPR signal was observed to be in relation with the rapid cell contraction and the subsequent cell spreading observed by phase-contrast microscopy. Additionally, the temporal redistribution of actin, observed by confocal microscopy after angiotensin II stimulation, was also found to be consistent with the SPR signal variation. The modulation of signaling pathways involved in actin-myosin driven cell contraction confirms the direct implication of actin structures in the SPR response. Additionally, we show that the intracellular calcium mobilization associated with angiotensin II stimulation did not produce any significant SPR signal variation. Altogether, our results demonstrate that SPR is a rapid label-free method to study cellular activity and molecular mechanisms implicated in the modulation of the integrity of a cell monolayer in relation to cytoskeleton remodeling with associated cell morphological changes.

19.
Appl Opt ; 46(18): 3724-9, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17538668

RESUMO

A novel reprogrammable optical phase array (ROPA) device is presented as a reconfigurable electro-optic element. One specific application of the ROPA, a 1 x 6 electro-optic space switch, is fully described. Switching angles are within 2 degrees , and switching is achieved through a complementary metal-oxide semiconductor (CMOS) controlled, diffraction based, optical phase array in a bulk BaTiO3 crystal. The crystal is flip-chipped to the CMOS chip, creating a compact fully integrated device. The design, optical simulation, and fabrication of the device are described, and preliminary experimental results are presented.


Assuntos
Óptica e Fotônica , Titânio/química , Algoritmos , Bário/química , Cristalização , Eletrodos , Elétrons , Lentes , Metais/química , Óxidos/química , Refratometria , Software
20.
Appl Opt ; 46(16): 3323-31, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514290

RESUMO

We propose two novel electro-optic (EO) deflectors based on two new nonrectangular geometries: the parabolic and the half-horn configurations. These devices not only provide excellent deflection angles, but also have the potential to build nonblocking 2 x 2 optical switches. A deflector figure of merit is defined, and comparisons with existing EO deflectors are given. Devices fabricated in LiTaO(3) demonstrate 3 dB of average insertion loss and 3 degrees deflection angles. These results represent the best deflection performances to our knowledge reported to date for bulk EO deflectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...