Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400548, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953251

RESUMO

An integrated electrochemical exfoliation and electrophoretic deposition (EPD) method is developed to achieve a high performance graphene supercapacitor. The electrochemical delamination of graphite sheet has obtained a low defected few-layer graphene adorned with oxygen-containing functional groups. Then, the EPD process produced a binder-free electrode to alleviate the graphene restacking problem. The electrode prepared using a deposition voltage of 5V exhibits the highest specific capacitance of 145.95 F/g at 0.5 A/g from three-electrode measurement. Moreover, this EPD-prepared electrode also demonstrates superior electrochemical properties compared to electrodes fabricated using PVDF binder. In the real symmetrical cell, the EPD-prepared electrode also shows excellent performance with a high rate capability of 82.31% (from 0.5 A/g to 10 A/g), high cycling stability of 95.00% (at 5 A/g) after 10,000 cycles, and rapid frequency response with short relaxation time (τ0) of 9.73 ms. These results indicate that this integration method is beneficial to construct a high performance binder-free supercapacitor electrode consisting of low-defected graphene materials, low electrode resistance, and less agglomeration of graphene sheets by utilizing an environmentally friendly process.

2.
Int J Biol Macromol ; 248: 125888, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473898

RESUMO

Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.


Assuntos
Amorphophallus , Hidrogéis , Hidrogéis/farmacologia , Mananas/farmacologia , Polissacarídeos , Prebióticos
4.
Sci Rep ; 11(1): 22211, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782669

RESUMO

Zero-dimensional Perovskite Magic-size Clusters play crucial roles in understanding and controlling nucleation and growth of semiconductor nanoparticles. However, their metastability behavior is a critical hindrance for reliable characterizations. Here, we report the first demonstration of using an excess amount of surface ligand and SiO2 as novel passivation for synthesizing the magic-sized clusters (MSCs) by the Ligand-assisted reprecipitation method. A synergetic effect between an excessed surface ligand and SiO2 inhibits the protonation and deprotonation reaction between amine-based and acid-based ligand, leading to enhanced PL stability. The obtained CH3NH3PbBr3 PMSCs/SiO2 retain 70% of its initial emission intensity in ambient conditions for 20 days. This passivation approach opens an entirely new avenue for the reliable characterizations of CH3NH3PbBr3 PMSCs, which will significantly broaden their application for understanding and controlling nucleation and growth of semiconductor nanoparticles.

5.
Molecules ; 26(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34500695

RESUMO

The accumulation of pollutants in water is dangerous for the environment and human lives. Some of them are considered as persistent organic pollutants (POPs) that cannot be eliminated from wastewater effluent. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose are metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. This review provides an up-to-date and comprehensive description of MOFs and their crucial role as adsorbent, catalyst, and membrane in wastewater treatment. This study also highlighted several strategies to improve their capability to remove pollutants from water effluent.

6.
RSC Adv ; 11(63): 39917-39923, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494130

RESUMO

Tunable emissive solid-state carbon nanoparticles (CNPs) have been successfully synthesized by a facile synthesis through microwave irradiation. Modulating microwave interaction with the sample to generate abrupt localized heating is a long-term challenge to tailor the photoluminescence properties of CNPs. This study systematically revealed that the sample temperature through microwave irradiation plays a crucial role in controlling the photoluminescence properties over other reaction conditions, such as irradiation time and microwave duty cycle. When the sample temperature reached 155 °C in less than three minutes, the CNP sample exhibited a green-yellowish emission with the highest quantum yield (QY) of 14.6%. Time-dependent density functional theory (TD-DFT) study revealed that the tunable photoluminescence properties of the CNPs can possibly be ascribed to their nitrogen concentrations, which were dictated by the sample temperature during irradiation. This study opens up a promising route for the well-controlled synthesis of luminescent CNPs through microwave irradiation.

7.
RSC Adv ; 11(3): 1360-1366, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424102

RESUMO

We report a rapid growth of the CH3NH3PbCl3 single crystal through microwave irradiation. A systematic evaluation of the structural and optical properties of the obtained single crystal was also conducted. 1 minute is the optimum microwave irradiation time that generated a large single crystal of dimension (5 × 5 × 2.5) mm3. The obtained crystal exhibits broad absorption in UV range and near-visible light luminescence under UV excitation with an optical bandgap around 2.8 eV. A fast and simple synthesis method of CH3NH3PbCl3 single crystal with these outstanding properties could be potentially applied for any optoelectronic application with scale-up production.

8.
RSC Adv ; 9(13): 7375-7381, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519984

RESUMO

Liquid Carbon Dots (CDs) were successfully synthesized by hydrothermal method using urea and citric acid as raw materials. TEM images confirmed that the CDs have a spherical shape with a homogeneous distribution. The as-prepared liquid CDs could absorb ultraviolet (UV) and first near infra-red (NIR) window simultaneously. However, the photoluminescence (PL) of the liquid CDs was damaged by their quenching effect. To overcome this issue, the liquid CDs were dispersed in poly(vinyl) alcohol (PVA) to fabricate the composite film. Herein, the dual-peak absorption properties of the CDs/PVA composite films were investigated for the first time. The composite films could maintain the simultaneous UV and first NIR window absorption property even after being preheated up to 200 °C, implying that the structure of CDs was well retained during the transition from the liquid to films. Daylight treatment for seven days produced minimum changes in the UV-vis and PL spectra, which indicates that the CDs/PVA film has more stable optical properties than the liquid CDs.

9.
Sci Rep ; 6: 21042, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876153

RESUMO

Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs' C-N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C-N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...