Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 66(2): 203-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19358889

RESUMO

Cytochrome b(5) (b(5)) has been shown to modulate many cytochrome P450 (CYP)-dependent reactions. In order to elucidate the mechanism of such modulations, it is necessary to evaluate not only the effect of native b(5) on CYP-catalyzed reactions, but also that of the apo-cytochrome b(5) (apo-b(5)). Therefore, the apo-b(5) protein was prepared using a heterologous expression in Escherichia coli. The gene for rabbit b(5) was constructed from synthetic oligonucleotides using polymerase chain reaction (PCR), cloned into pUC19 plasmid and amplified in DH5 alpha cells. The gene sequence was verified by DNA sequencing. The sequence coding b(5) was cleaved from pUC19 by NdeI and XhoI restriction endonucleases and subcloned to the expression vector pET22b. This vector was used to transform E. coli BL-21 (DE3) Gold cells by heat shock. Expression of b(5) was induced with isopropyl beta-D-1-thiogalactopyranoside (IPTG). The b(5) protein, produced predominantly in its apo-form, was purified from isolated membranes of E. coli cells by chromatography on a column of DEAE-Sepharose. Using such procedures, the homogenous preparation of apo-b(5) protein was obtained. Oxidized and reduced forms of the apo-b(5) reconstituted with heme exhibit the same absorbance spectra as native b(5). The prepared recombinant apo-b(5) reconstituted with heme can be reduced by NADPH:CYP reductase. The reconstituted apo-b(5) is also fully biologically active, exhibiting the comparable stimulation effect on the CYP3A4 enzymatic activity towards oxidation of 1-phenylazo-2-hydroxynaphthalene (Sudan I) as native rabbit and human b(5).


Assuntos
Apoenzimas/metabolismo , Citocromos b5/metabolismo , Apoenzimas/genética , Sequência de Bases , Cromatografia por Troca Iônica , Clonagem Molecular , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/genética , Escherichia coli/genética , Heme/metabolismo , Humanos , Dados de Sequência Molecular , Naftóis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Interdiscip Toxicol ; 2(4): 239-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21217860

RESUMO

A simple and sensitive method was developed to separate the carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), and six of its oxidation metabolites generated by rat hepatic microsomes enriched with cytochrome P450 (CYP) 1A1, by high pressure liquid chromatography (HPLC). The HPLC method, using an acetonitrile/water gradient as mobile phase and UV detection, provided appropriate separation and detection of both mono- and di-hydroxylated metabolites of BaP as well as BaP diones formed by rat hepatic microsomes and the parental BaP. In this enzymatic system, 3-hydroxy BaP, 9-hydroxy BaP, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-9,10-dihydrodiol and BaP-dione were generated. Among them the mono-hydroxylated BaP metabolite, 3-hydroxy BaP followed by di-hydroxylated BaP products, BaP-7,8-dihydrodiol and BaP-9,10-dihydrodiol, predominated, while BaP-dione was a minor metabolite. This HPLC method will be useful for further defining the roles of the CYP1A1 enzyme with both in vitro and in vivo models in understanding its real role in activation and detoxification of BaP.

3.
Carcinogenesis ; 29(3): 656-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18204078

RESUMO

Many studies using mammalian cellular and subcellular systems have demonstrated that polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are metabolically activated by cytochrome P450s (CYPs). In order to evaluate the role of hepatic versus extra-hepatic metabolism of BaP and its pharmacokinetics, we used the hepatic cytochrome P450 reductase null (HRN) mouse model, in which cytochrome P450 oxidoreductase, the unique electron donor to CYPs, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated intraperitoneally (i.p.) with 125 mg/kg body wt BaP daily for up to 5 days. Clearance of BaP from blood was analysed by high-performance liquid chromatography with fluorescence detection. DNA adduct levels were measured by (32)P-post-labelling analysis with structural confirmation of the formation of 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene by liquid chromatography-tandem mass spectrometry analysis. Hepatic microsomes isolated from BaP-treated and untreated mice were also incubated with BaP and DNA in vitro. BaP-DNA adduct formation was up to 7-fold lower with the microsomes from HRN mice than with that from WT mice. Most of the hepatic microsomal activation of BaP in vitro was attributable to CYP1A. Pharmacokinetic analysis of BaP in blood revealed no significant differences between HRN and WT mice. BaP-DNA adduct levels were higher in the livers (up to 13-fold) and elevated in several extra-hepatic tissues of HRN mice (by 1.7- to 2.6-fold) relative to WT mice. These data reveal an apparent paradox, whereby hepatic CYP enzymes appear to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/enzimologia , Mutagênicos/farmacocinética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Área Sob a Curva , Biotransformação , Cromatografia Líquida de Alta Pressão , Camundongos , Camundongos Knockout , NADPH-Ferri-Hemoproteína Redutase/genética , Reação em Cadeia da Polimerase
4.
Interdiscip Toxicol ; 1(2): 160-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21218107

RESUMO

Two compounds known to covalently bind to DNA after their activation with cytochromes P450 (CYPs), carcinogenic benzo(a)pyrene (BaP) and an antineoplastic agent ellipticine, were investigated for their potential to induce CYP and NADPH:CYP reductase (POR) enzymes in rodent livers, the main target organ for DNA adduct formation. Two animal models were used in the study: (i) rats as animals mimicking the fate of ellipticine in humans and (ii) mice, especially wild-type (WT) and hepatic POR null (HRN™) mouse lines. Ellipticine and BaP induce expression of CYP1A enzymes in livers of experimental models, which leads to increase in their enzymatic activity. In addition, both compounds are capable of generating DNA adducts, predominantly in livers of studied organisms. As determined by (32)P postlabelling analysis, levels of ellipticine-derived DNA adducts formed in vivo in the livers of HRN™ mice were reduced (by up to 65%) relative to levels in WT mice, indicating that POR mediated CYP enzyme activity is important for the activation of ellipticine. In contrast to these results, 6.4 fold higher DNA binding of BaP was observed in the livers of HRN™ mice than in WT mice. This finding suggests a detoxication role of CYP1A in BaP metabolism in vivo. In in vitro experiments, DNA adduct formation in calf thymus DNA was up to 25 fold higher in incubations of ellipticine or BaP with microsomes from pretreated animals than with controls. This stimulation effect was attributed to induction of CYP1A1/2 enzymes, which are responsible for oxidative activation of both compounds to the metabolites generating major DNA adducts in vitro. Taken together, these results demonstrate that by inducing CYP1A1/2, ellipticine and BaP modulate their own enzymatic metabolic activation and detoxication, thereby modulating their either pharmacological (ellipticine) and/or genotoxic potential (both compounds).

5.
Drug Metab Dispos ; 35(10): 1926-34, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17656468

RESUMO

Ellipticine is an antineoplastic agent whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II, and formation of covalent DNA adducts mediated by cytochromes P450 (P450s) and peroxidases. Here, this drug was found to induce CYP1A1 and/or 1A2 enzymes and their enzymatic activities in livers, lungs, and kidneys of rats treated (i.p.) with ellipticine. The induction is transient. In the absence of repeated administration of ellipticine, the levels and activities of the induced CYP1A decreased almost to the basal level 2 weeks after treatment. The ellipticine-mediated CYP1A induction increases the DNA adduct formation by the compound. When microsomal fractions from livers, kidneys, and lungs of rats treated with ellipticine were incubated with ellipticine, DNA adduct formation, measured by (32)P-postlabeling analysis, was up to 3.8-fold higher in incubations with microsomes from pretreated rats than with controls. The observed stimulation of DNA adduct formation by ellipticine was attributed to induction of CYP1A1 and/or 1A2-mediated increase in ellipticine oxidative activation to 13-hydroxy- and 12-hydroxyellipticine, the metabolites generating two major DNA adducts in human and rat livers. In addition to these metabolites, increased formation of the excretion products 9-hydroxy- and 7-hydroxyellipticine was also observed in microsomes of rats treated with ellipticine. Taken together, these results demonstrate for the first time that by inducing CYP1A1/2, ellipticine increases its own metabolism, leading both to an activation of this drug to reactive species-forming DNA adducts and to detoxication metabolites, thereby modulating to some extent its pharmacological and/or genotoxic potential.


Assuntos
Antineoplásicos/farmacologia , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A2/biossíntese , Elipticinas/farmacologia , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Citocromos , Adutos de DNA , Indução Enzimática/efeitos dos fármacos , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Microssomos/enzimologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
6.
Toxicology ; 236(1-2): 50-60, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17482743

RESUMO

Ellipticine is an antineoplastic agent, whose mode of antitumor and/or toxic side effects is based on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochromes P450 and peroxidases. We investigated the formation and persistence of DNA adducts generated in rat, the animal model mimicking the bioactivation of ellipticine in human. Using (32)P-postlabeling, ellipticine-DNA adducts were found in liver, kidney, lung, spleen, heart and brain of female and male rats exposed to ellipticine (4, 40 and 80 mg/kg body weight, i.p.). The two major adducts were identical to the deoxyguanosine adducts generated in DNA by 13-hydroxy- and 12-hydroxyellipticine in vitro as confirmed by HPLC of the isolated adducts. At four post-treatment times (2 days, 2, 10 and 32 weeks) DNA adducts in rats treated with 80 mg/kg of ellipticine were analyzed in each tissue to study their long-term persistence. In all organs maximal adduct levels were found 2 days after administration. At all time points highest total adduct levels were in liver (402 adducts/10(8) nucleotides after 2 days and 3.6 adducts/10(8) nucleotides after 32 weeks), kidney and lung followed by spleen, heart and brain. Total adduct levels decreased over time to 0.8-8.3% of the initial levels till the latest time point and showed a biphasic profile, a rapid loss during the first 2 weeks was followed by a much slower decline till 32 weeks. These results, the first characterization of persistence of ellipticine-DNA adducts in vivo, are necessary to evaluate genotoxic side effects of ellipticine.


Assuntos
Antineoplásicos/toxicidade , Adutos de DNA , Elipticinas/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo
7.
Cancer Lett ; 252(2): 270-9, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17306925

RESUMO

Ellipticine induces formation of two DNA adducts in leukemia HL-60 and CCRF-CEM cells, identical with deoxyguanosine adducts generated by ellipticine metabolites 13-hydroxyellipticine and 12-hydroxyellipticine in vitro and in vivo. The ellipticine cytotoxicity to HL-60 (IC(50)=0.64microM) and CCRF-CEM cells (IC(50)=4.7microM) correlates with levels of DNA adducts. The different expressions of enzymes activating ellipticine in cells explain this finding. While cytochrome P450 1A1 and cyclooxygenase-1 are expressed in both cells, HL-60 cells express also high levels of another activator, myeloperoxidase. The results suggest the adduct formation as a new mode of antitumor action of ellipticine for leukemia.


Assuntos
Antineoplásicos/farmacologia , Adutos de DNA/biossíntese , Elipticinas/farmacologia , Leucemia/patologia , Linhagem Celular Tumoral , Humanos
8.
Neuro Endocrinol Lett ; 27 Suppl 2: 18-22, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17159771

RESUMO

OBJECTIVES: Ellipticine is a potent antineoplastic agent exhibiting multiple action mechanisms. Recently, we found that after cytochrome P450 (CYP)-mediated oxidation ellipticine forms covalent DNA adducts. Ellipticine oxidation by isolated CYP and its binding to DNA is the target of this study. METHODS: High performance liquid chromatography (HPLC) was employed for separation and characterization of ellipticine metabolites generated by CYPs. The (32)P-postlabeling technique was utilized to determine ellipticine-DNA adducts. RESULTS: Purified CYP enzymes reconstituted with NADPH:CYP reductase oxidized ellipticine to up to five metabolites, 7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and ellipticine N(2)-oxide. However, only CYP1A1 was capable to form all metabolites. Using the reconstituted enzymatic system, we demonstrated that the detoxication ellipticine metabolites, 7-hydroxyellipticine and 9-hydroxyellipticine, are mainly generated by CYP1A1 and 1A2, while those responsible for DNA binding, 13-hydroxy-, 12-hydroxyellipticine and ellipticine N(2)-oxide, by CYP3A1 and 2C3. Likewise, the most efficient CYPs forming DNA adducts from ellipticine were CYP3A1 and 2C3. CONCLUSIONS: The results showed that the system of purified CYPs reconstituted with NADPH: CYP reductase proved for ellipticine oxidation provide a true reflection of the situation in the microsomal membrane.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Elipticinas/farmacocinética , Desintoxicação Metabólica Fase I , Microssomos Hepáticos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADP/metabolismo , Animais , Antineoplásicos/farmacocinética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Adutos de DNA/metabolismo , Microssomos Hepáticos/química , Modelos Biológicos , NADP/química , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , Coelhos , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-16601806

RESUMO

Ellipticine is a potent antineoplastic agent, whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms the cytochrome P450 (CYP)-mediated covalent DNA adducts. Here, we study the effect of ellipticine on CYP enzymes in rat hepatic microsomes, studying its binding to the enzymes and its potential to inhibit the CYP activities measured with their selective substrates. Although ellipticine was reported to be a selective and strong inhibitor of CYP1A1/2, we found that its inhibitory potential is non-specific. Ellipticine is the most potent inhibitor for CYP3A-dependent 6beta-hydroxylation of progesterone, followed by CYP1A1/2-dependent ethoxyresorufin O-deethylation and CYP2B-mediated pentoxyresorufin O-depentylation. Lower inhibition was detected for 1'-hydroxylation of bufurarol, 21-hydroxylation of progesterone and 6-hydroxylation of chlorzoxazone catalyzed by CYP2D, CYP2C and CYP2E1, respectively. Ellipticine binds to several CYPs of rat hepatic microsomes. The binding titration of ellipticine typically give reverse type I spectrum with CYPs in rat hepatic microsomes. The results indicate that inhibition of CYPs by ellipticine cannot be explained only by its differential potency to bind to individual CYPs.


Assuntos
Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Elipticinas/farmacologia , Microssomos Hepáticos/enzimologia , Animais , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Ratos
10.
Cancer Res ; 64(22): 8374-80, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15548707

RESUMO

Ellipticine is an antineoplastic agent, the mode of action of which is considered to be based on DNA intercalation and inhibition of topoisomerase II. We found that ellipticine also forms the cytochrome P450 (CYP)-mediated covalent DNA adducts. We now identified the ellipticine metabolites formed by human CYPs and elucidated the metabolites responsible for DNA binding. The 7-hydroxyellipticine, 9-hydroxyellipticine, 12-hydroxyellipticine, 13-hydroxyellipticine, and ellipticine N(2)-oxide are generated by hepatic microsomes from eight human donors. The role of specific CYPs in the oxidation of ellipticine and the role of the ellipticine metabolites in the formation of DNA adducts were investigated by correlating the levels of metabolites formed in each microsomal sample with CYP activities and with the levels of the ellipticine-derived deoxyguanosine adducts in DNA. On the basis of this analysis, formation of 9-hydroxyellipticine and 7-hydroxyellipticine was attributable to CYP1A1/2, whereas production of 13-hydroxyellipticine and ellipticine N(2)-oxide, the metabolites responsible for formation of two major DNA adducts, was attributable to CYP3A4. Using recombinant human enzymes, oxidation of ellipticine to 9-hydroxyellipticine and 7-hydroxyellipticine by CYP1A1/2 and to 13-hydroxyellipticine and N(2)-oxide by CYP3A4 was corroborated. Homologue modeling and docking of ellipticine to the CYP3A4 active center was used to explain the predominance of ellipticine oxidation by CYP3A4 to 13-hydroxyellipticine and N(2)-oxide.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Adutos de DNA , Elipticinas/farmacologia , Cromatografia Líquida de Alta Pressão , Elipticinas/química , Humanos , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Proteínas Recombinantes/metabolismo
11.
Int J Cancer ; 107(6): 885-90, 2003 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-14601046

RESUMO

Ellipticine is a potent antineoplastic agent whose mode of action is considered to be based mainly on DNA intercalation and/or inhibition of topoisomerase II. Recently, we found that ellipticine also forms covalent DNA adducts in vitro and that the formation of the major adduct is dependent on the activation of ellipticine by cytochrome P450 (CYP). Here, we investigated the capacity of ellipticine to form DNA adducts in vivo. Male Wistar rats were treated with ellipticine, and DNA from various organs was analyzed by (32)P postlabeling. Ellipticine-specific DNA adduct patterns, similar to those found in vitro, were detected in most test organs. Only DNA of testes was free of the ellipticine-DNA adducts. The highest level of DNA adducts was found in liver (19.7 adducts per 10(7) nucleotides), followed by spleen, lung, kidney, heart and brain. One major and one minor ellipticine-DNA adducts were found in DNA of all these organs of rats exposed to ellipticine. Besides these, 2 or 3 additional adducts were detected in DNA of liver, kidney, lung and heart. The predominant adduct formed in rat tissues in vivo was identical to the deoxyguanosine adduct generated in DNA by ellipticine in vitro as shown by cochromatography in 2 independent systems. Correlation studies showed that the formation of this major DNA adduct in vivo is mediated by CYP3A1- and CYP1A-dependent reactions. The results presented here are the first report showing the formation of CYP-mediated covalent DNA adducts by ellipticine in vivo and confirm the formation of covalent DNA adducts as a new mode of ellipticine action.


Assuntos
Antineoplásicos/farmacocinética , Adutos de DNA/metabolismo , Elipticinas/farmacocinética , Microssomos/metabolismo , Animais , Biotransformação , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Marcação por Isótopo/métodos , Masculino , Microssomos Hepáticos/metabolismo , Especificidade de Órgãos , Radioisótopos de Fósforo , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...