Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36141677

RESUMO

In this study, a newly synthesized sepiolite-supported nanoscale zero-valent iron (S-nZVI) adsorbent was tested for the efficient removal of As(III) and As(V) in aqueous solution. Compared with ZVI nanoparticles, the As(III) and As(V) adsorption abilities of S-nZVI were substantially enhanced to 165.86 mg/g and 95.76 mg/g, respectively, owing to the good dispersion of nZVI on sepiolite. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model, and the adsorption isotherms were fitted with the Freundlich model, denoting a multilayer chemical adsorption process. The increase in the initial solution pH of the solution inhibited As(III) and As(V) adsorption, but a weaker influence on As(III) than As(V) adsorption was observed with increasing pH. Additionally, the presence of SO42- and NO3- ions had no pronounced effect on As(III) and As(V) removal, while PO43- and humic acid (HA) significantly restrained the As(III) and As(V) adsorption ability, and Mg2+/Ca2+ promoted the As(V) adsorption efficiency. Spectral analysis showed that As(III) and As(V) formed inner-sphere complexes on S-nZVI. As(III) oxidation and As(V) reduction occurred with the adsorption process on S-nZVI. Overall, the study demonstrated a potential adsorbent, S-nZVI, for the efficient removal of As(III) and As(V) from contaminated water.


Assuntos
Arsenitos , Poluentes Químicos da Água , Adsorção , Arseniatos , Substâncias Húmicas/análise , Ferro/química , Cinética , Silicatos de Magnésio , Termodinâmica , Água , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 319: 115658, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842987

RESUMO

Arsenic (As) and cadmium (Cd) are two highly toxic elements. In recent years, many newly synthesized chemical materials have been used widely for treatments of As- and Cd-contaminated effluents. However, most materials do not exhibit high efficiencies for simultaneous removal of As and Cd from water systems. Our study established a simple scheme for synthesizing a sepiolite (SEP)-modified nanoscale zero-valent iron (S-nZVI) for simultaneous removal of coexisting As and Cd from water and illuminated a possible underlying mechanism. Batch experiments showed that the maximum capacities for adsorption of As(III) and Cd(II) by S-nZVI were 230.29 mg/g and 11.37 mg/g, respectively, which represented better effects than those of other materials, as reported previously. Removal of Cd(II) depended on pH, but As(III) removal showed little dependence on pH. Coexisting ions such as phosphate (PO43-) and the conjugate base of humic acid (HA) significantly inhibited simultaneous removal of As(III) and Cd(II). In the mixed As(III)-Cd(II) system, the presence of As(III)-pretreated S-nZVI significantly enhanced Cd(II) adsorption by a factor of four over that seen for aqueous solution without As(III). XRD and XPS results showed that CdFe2O4 (Fe-O-Cd), Fe2As2O14 or FeAsO4 (Fe-O-As) were formed after As(III) and Cd(II) were captured by S-nZVI. However, a further zeta (ζ) potential analysis showed that the mechanism for As(III) and Cd(II) adsorption by S-nZVI is not just simple formation of the above chemicals, since the adsorbed As(III) increased the negative charge of S-nZVI; this suggested an electrostatic attraction between S-nZVI and Cd(II) and indicated that adsorbed As(III) created new sorption sites for Cd(II), which enhanced Cd(II) sorption via formation of ternary complexes (Fe-As-Cd). These results suggested that S-nZVI is a promising material for in situ remediation of heavy metal-contaminated groundwaters or paddy soils.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Cádmio/análise , Ferro/química , Silicatos de Magnésio , Água , Poluentes Químicos da Água/análise
3.
Biomed Res Int ; 2018: 8278970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707578

RESUMO

Activated sludge bulking is easily caused in winter, resulting in adverse effects on effluent treatment and management of wastewater treatment plants. In this study, activated sludge samples were collected from different wastewater treatment plants in the northern Xinjiang Uygur Autonomous Region of China in winter. The bacterial community compositions and diversities of activated sludge were analyzed to identify the bacteria that cause bulking of activated sludge. The sequencing generated 30087-55170 effective reads representing 36 phyla, 293 families, and 579 genera in all samples. The dominant phyla present in all activated sludge were Proteobacteria (26.7-48.9%), Bacteroidetes (19.3-37.3%), Chloroflexi (2.9-17.1%), and Acidobacteria (1.5-13.8%). Fifty-five genera including unclassified_f_Comamonadaceae, norank_f_Saprospiraceae, Flavobacterium, norank_f_Hydrogenophilaceae, Dokdonella, Terrimonas, norank_f_Anaerolineaceae, Tetrasphaera, Simplicispira, norank_c_Ardenticatenia, and Nitrospira existed in all samples, accounting for 60.6-82.7% of total effective sequences in each sample. The relative abundances of Saprospiraceae, Flavobacterium, and Tetrasphaera with the respective averages of 12.0%, 8.3%, and 5.2% in bulking sludge samples were higher than those in normal samples. Filamentous Saprospiraceae, Flavobacterium, and Tetrasphaera multiplied were the main cause for the sludge bulking. Redundancy analysis (RDA) indicated that influent BOD5, DO, water temperature, and influent ammonia had a distinct effect on bacterial community structures.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiota/fisiologia , Estações do Ano , Águas Residuárias/microbiologia , Microbiologia da Água , Purificação da Água , Bactérias/classificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...