Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Mol Mutagen ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644659

RESUMO

Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.

2.
J Radiol Prot ; 43(4)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669663

RESUMO

In September 2022, the International Commission on Radiological Protection (ICRP) organised a workshop in Estoril, Portugal, on the 'Review and Revision of the System of Radiological Protection: A Focus on Research Priorities'. The workshop, which was a side event of the European Radiation Protection Week, offered an opportunity to comment on a recent paper published by ICRP on areas of research to support the System of Radiological Protection. Altogether, about 150 individuals participated in the workshop. After the workshop, 16 of the 30 organisations in formal relations with ICRP provided written feedback. All participants and organisations followed ICRP's view that further research in various areas will offer additional support in improving the System in the short, medium, and long term. In general, it was emphasised that any research should be outcome-focused in that it should improve protection of people or the environment. Many research topics mentioned by the participants were in line with those already identified by ICRP in the paper noted above. In addition, further ideas were expressed such as, for example, that lessons learned during the COVID-19 pandemic with regards to the non-radiological social, economic and environment impacts, should be analysed for their usefulness to enhance radiological protection, and that current protection strategies and application of current radiological protection principles may need to be adapted to military scenarios like those observed recently during the military conflict in the Ukraine or the detonation of a nuclear weapon. On a broader perspective, it was discussed how radiation research and radiological protection can contribute towards the Sustainable Development Goals announced by the United Nations in 2015. This paper summarises the views expressed during the workshop and the major take home messages identified by ICRP.

3.
Eur J Vasc Endovasc Surg ; 66(2): 178-185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37011855

RESUMO

OBJECTIVE: To estimate operator organ doses from fluoroscopically guided infrarenal endovascular aneurysm repair (EVAR) procedures, using the detailed exposure information contained in radiation dose structured reports. METHODS: Conversion factors relating kerma area product (PKA) to primary operator organ doses were calculated using Monte Carlo methods for 91 beam angles and seven x-ray spectra typical of clinical practice. A computer program was written, which selects the appropriate conversion factor for each exposure listed in a structured report and multiplies it by the respective PKA. This system was used to estimate operator doses for 81 EVAR procedures for which structured reports were available. The impact of different shielding scenarios and variations in operator position was also investigated. RESULTS: Without any shielding, the median estimated effective dose was 113 µSv (interquartile range [IQR] 71, 252 µSv). The highest median organ doses were for the colon (154 µSv, IQR 81, 343) and stomach (133 µSv, IQR 76, 307). These dose estimates represent all exposures, including fluoroscopy and non-fluoroscopic digital acquisitions. With minimal shielding provided by 0.25 mm of Pb covering the torso and upper legs, the effective dose was reduced by a factor of around 6. With additional shielding from ceiling and table shields, a 25 to 50 fold reduction in dose is achievable. Estimated doses were highest where the primary beam was pointed directly away from the operator. CONCLUSION: The models suggest that with optimal use of shielding, operator doses can be reduced to levels equivalent to one to two days of natural background exposure and well below statutory dose limits.

4.
Cytogenet Genome Res ; 163(3-4): 163-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071978

RESUMO

In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated, and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0-4 Gy at two different facilities in Germany (Physikalisch-Technische Bundesanstalt [PTB]) and the USA (the Columbia IND Neutron Facility [CINF]). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semiautomatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semiautomatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed nonlinear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.


Assuntos
Nêutrons , Humanos , Alemanha
5.
Adv Redox Res ; 7: None, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798747

RESUMO

Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7ß-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7ß-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.

6.
Int J Radiat Biol ; 98(3): 421-427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515621

RESUMO

PURPOSE: The aim of this brief personal, high level review is to consider the state of the art for biological dosimetry for radiation routine and emergency response, and the potential future progress in this fascinating and active field. Four areas in which biomarkers may contribute to scientific advancement through improved dose and exposure characterization, as well as potential contributions to personalized risk estimation, are considered: emergency dosimetry, molecular epidemiology, personalized medical dosimetry, and space travel. CONCLUSION: Ionizing radiation biodosimetry is an exciting field which will continue to benefit from active networking and collaboration with the wider fields of radiation research and radiation emergency response to ensure effective, joined up approaches to triage; radiation epidemiology to assess long term, low dose, radiation risk; radiation protection of workers, optimization and justification of radiation for diagnosis or treatment of patients in clinical uses, and protection of individuals traveling to space.


Assuntos
Incidentes com Feridos em Massa , Proteção Radiológica , Humanos , Radiação Ionizante , Radiometria , Triagem
7.
Radiat Res ; 197(1): 1-6, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788470

RESUMO

Recent epidemiological and experimental animal data, as well as reanalyses of data previously accumulated, indicate that the lens of the eye is more radiosensitive than was previously thought. This has resulted in a reduction of the occupational lens dose limit within the European Union countries, Japan and elsewhere. This Commentary introduces the work done by the LDLensRad Consortium contained within this Focus Issue, towards advancement of understanding of the mechanisms of low dose radiation cataract.


Assuntos
Catarata/etnologia , Cristalino/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Europa (Continente) , Humanos , Japão , Camundongos Endogâmicos C57BL , Exposição Ocupacional , Doses de Radiação , Tolerância a Radiação
8.
Exp Eye Res ; 212: 108772, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562436

RESUMO

When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.


Assuntos
Catarata/etiologia , Cristalino/efeitos da radiação , Lesões por Radiação/complicações , Relação Dose-Resposta à Radiação , Humanos , Radiação Ionizante , Fatores de Risco
9.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138666

RESUMO

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Assuntos
Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação/análise , Estudos Retrospectivos
10.
Radiat Oncol ; 16(1): 83, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941218

RESUMO

BACKGROUND: This communication reports the identification of a new panel of transcriptional changes in inflammation-associated genes observed in response to ionising radiation received by radiotherapy patients. METHODS: Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumours. Nanostring nCounter analysis of transcriptional changes was carried out in samples prior and 24 h post-delivery of the 1st radiotherapy fraction, just prior to the 5th or 6th fraction, and just before the last fraction. RESULTS: Statistical analysis with BRB-ArrayTools, GLM MANOVA and nSolver, revealed a radiation responsive panel of genes which varied by patient group (type of cancer) and with time since exposure (as an analogue for dose received), which may be useful as a biomarker of radiation response. CONCLUSION: Further validation in a wider group of patients is ongoing, together with work towards a full understanding of patient specific responses in support of personalised approaches to radiation medicine.


Assuntos
Biomarcadores Tumorais/sangue , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Inflamação/genética , Neoplasias/sangue , Radiação Ionizante , Transcriptoma/efeitos da radiação , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/radioterapia , Feminino , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/radioterapia , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/radioterapia , Projetos Piloto , Prognóstico , Neoplasias Urogenitais/sangue , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/radioterapia
11.
Radiat Res ; 195(6): 584-589, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788925

RESUMO

Recently, it has been proposed that the doses received from 133Xe released during the accident in 1979 at the Three Mile Island (TMI) plant in Pennsylvania were much higher than has been conventionally assessed, due to a gross underestimation of the relative biological effectiveness of electrons from beta-particle-emitting radionuclides within the body. The central evidence cited in support of this proposal was the doses derived from cytogenetic analyses of blood sampled in the mid-1990s from people living near TMI at the time of the accident. However, the chromosome aberration data show a marked discrepancy in biodosimetric estimates evaluated from the frequencies of stable translocations and unstable dicentrics (corrected for temporal attenuation), strongly suggesting that exposures to clastogenic agents occurred long after the TMI accident. Few details have been reported on the people providing the blood samples and how they were selected for study. Crucially, this lack of information includes the distributions in the exposed and control groups of age at sampling, which is a critical factor in interpreting translocation data. Contrary to the recent claim, these cytogenetic data offer no support to the suggestion of a serious underestimation of internal doses from beta particles or from 133Xe discharged during the TMI accident.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Exposição à Radiação/efeitos adversos , Liberação Nociva de Radioativos , Análise Química do Sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria
12.
Environ Int ; 146: 106213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276315

RESUMO

In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.


Assuntos
Catarata , Cristalino , Exposição Ocupacional , Lesões por Radiação , Catarata/epidemiologia , Catarata/etiologia , Humanos , Doses de Radiação , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radiação Ionizante
13.
J Radiol Prot ; 40(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33142276

RESUMO

In May 2016, a new linear accelerator (Linac) was installed at a hospital oncology department. A team of individuals supervised the installation, including a Radiation Oncologist who acted as an independent observer to the installation, calibration, beam data collection and shielding measurements. In order to ensure the shielding was correct, a licensed representative of the Turkish Atomic Energy Authority carried out formal measurements of the gamma and neutron dose rates at a variety of locations in and around the Linac facility. At 18 MV, the maximum neutron dose rate was 172µSv h-1and the maximum gamma dose rate was approximately 2µSv h-1(ambient dose equivalent in both cases), significantly higher than the expected and local background doses. As the neutron dose rates in particular were so high, it was concluded that the shielding was not sufficient, potentially due to an inadequate design. In order to rule out overexposure during the installation, biological dosimetry was carried out for a number of the individuals involved. The estimated doses were closely aligned with the doses measured using commercially available neutron dosemeters and were also within the tolerance dose ranges estimated using Monte Carlo simulations, which also supported the investigation. The results underline the need for careful planning before and after installation of new radiation exposure facilities, especially high MV Linac operation for which photo-neutrons might need to be mitigated. The results clearly indicate the importance of such checks, in addition to demonstrating the relevance of biological dosimetry supported by modelling strategies complex or unclear exposure scenarios.


Assuntos
Proteção Radiológica , Humanos , Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Doses de Radiação , Radiometria
14.
Int J Radiat Biol ; 96(11): 1339-1361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897800

RESUMO

PURPOSE: Since the exact development of posterior subcapsular cataracts (PSCs) is poorly understood, we review various risk factors and propose a two-stage etiology for PSCs. METHODS: The biological mechanisms associated with age-related cataracts (primarily nuclear cataracts, cortical cataracts and PSCs) were reviewed in relation to selected risk factors that induce PSCs (including atopy, diabetes, hypoparathyroidism, myopia, retinitis, solar radiation, steroid use, uveitis, vitrectomy and ionizing radiation). We particularly focused on ionizing radiation, as this is known to be a risk factor specific to PSCs. Based on an analysis of the reviewed material, we propose a detailed explanation of the etiology of PSCs. CONCLUSIONS: Lens epithelial cells (LECs) and lens fiber cells are normally hypoxic and therefore very sensitive to changes in oxidative stress, as quantified by the radiation oxygen effect. We hypothesize that the development of PSC opacities is a two-stage process. Stage I, early in life, is driven by risk factors that promote oxidative stress and ion-pump disruption, harming lens fibers and causing aberrant LECs to proliferate and ectopically migrate as Wedl cells (perhaps by processes associated with an epithelial to mesenchymal transition) to the posterior pole region. After a latent period, in Stage II, the development of PSCs advances mainly due to chronic inflammation and other premature aging-related mechanisms that promote mature vacuolar or plaque PSC. This two-stage hypothesis of PSC etiology accounts for risk factors, such as aging, diabetes and ionizing radiation, which directly affects LECs and the lens. In addition, these risk factors can damage other ocular regions, such as the retina and vitreous, that also indirectly contribute to the development of PSCs. It is possible that the incidence of PSCs may be reduced by reversing the effects of Stage I through various means, including ocular antioxidants.


Assuntos
Envelhecimento , Catarata/etiologia , Complicações do Diabetes/etiologia , Lesões por Radiação/etiologia , Catarata/epidemiologia , Catarata/fisiopatologia , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/fisiopatologia , Humanos , Lesões por Radiação/epidemiologia , Lesões por Radiação/fisiopatologia , Fatores de Risco
15.
J Radiol Prot ; 40(3): 704-726, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32428884

RESUMO

Endovascular aneurysm repair (EVAR) is a well-established minimally invasive technique that relies on x-ray guidance to introduce a stent through the femoral artery and manipulate it into place. The aim of this study was to estimate patient organ and effective doses from EVAR procedures using anatomically realistic computational phantoms and detailed exposure information from radiation dose structured reports (RDSR). Methods: Lookup tables of conversion factors relating kerma area product (PKA) to organ doses for 49 different beam angles were produced using Monte Carlo simulations (MCNPX2.7) with International Commission on Radiological Protection (ICRP) adult male and female voxel phantoms for EVAR procedures of varying complexity (infra-renal, fenestrated/branched and thoracic EVAR). Beam angle specific correction factors were calculated to adjust doses according to x-ray energy. A MATLAB function was written to find the appropriate conversion factor in the lookup table for each exposure described in the RDSR, perform energy corrections and multiply by the respective exposure PKA. Using this approach, organ doses were estimated for 183 EVAR procedures in which RDSRs were available. A number of simplified dose estimation methodologies were also investigated for situations in which RDSR data are not available. Results: Mean estimated bone marrow doses were 57 (range: 2-247), 86 (2-328) and 54 (8-250) mGy for infra-renal, fenestrated/branched and thoracic EVAR, respectively. Respective effective doses were 27 (1-208), 54 (1-180) and 37 (5-167) mSv. Dose estimates using non-individualised, average conversion factors, along with those produced using the alternative Monte Carlo code PCXMC, yielded reasonably similar results overall, though variation for individual procedures could exceed 100% for some organs. In conclusion, radiation doses from x-ray guided endovascular aneurysm repairs are potentially high, though this must be placed in the context of the life sparing nature and high success rate for this procedure.


Assuntos
Aneurisma/diagnóstico por imagem , Aneurisma/cirurgia , Procedimentos Endovasculares , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Feminino , Fluoroscopia , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Stents
16.
PLoS One ; 13(11): e0207464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485322

RESUMO

Over the last decade, the γ-H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double-strand-breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose-response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose-response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods.


Assuntos
Histonas/metabolismo , Modelos Biológicos , Doses de Radiação , Exposição à Radiação , Humanos
17.
J Radiol Prot ; 38(2): 731-742, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29692365

RESUMO

Tissue reactions are the most clinically significant consequences of high-dose exposures to ionizing radiation. However, there is currently no universally recognized or recommended dose quantity that can be used to assess generalized risks to individuals following whole body exposures in the high-dose range. This is particularly problematic in emergency response situations, for example, following external exposures of large numbers of individuals: in attempts to relate the triage dosemeter absorbed dose to the risk to the individual, such that a 'dose' may subsequently be reported to medical professionals, it is necessary to first agree on the quantity to be reported. The current paper presents a brief review of the likely scenarios and emergency dosimetry techniques that require such a quantity, before examining the biological constraints and requirements that might underpin any future definition. The aim of this work is to outline the arguments for developing a commonly agreed dose quantity for reporting high-dose radiation exposures.


Assuntos
Exposição à Radiação/análise , Radiometria , Emergências , Humanos
18.
J Radiol Prot ; 38(2): 743-762, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29692366

RESUMO

Tissue reactions are the most clinically significant consequences of high-dose exposures to ionising radiation. However, currently there is no universally recognized dose quantity that can be used to assess and report generalised risks to individuals following whole body exposures in the high-dose range. In this work, a number of potential dose quantities are presented and discussed, with mathematical modelling techniques employed to compare them and explore when their differences are most or least manifest. The results are interpreted to propose the average (D GRB) of the absorbed doses to the stomach, small intestine, red bone marrow, and brain as the optimum quantity for informing assessments of risk. A second, maximally conservative dose quantity (D Max) is also suggested, which places limits on any under-estimates resulting from the adoption of D GRB. The primary aim of this work is to spark debate, with further work required to refine the final choice of quantity or quantities most appropriate for the full range of different potential exposure scenarios.


Assuntos
Fótons , Exposição à Radiação/análise , Radiometria , Humanos
19.
Phys Med ; 46: 140-147, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29519400

RESUMO

Studies suggest iodinated contrast media (ICM) may increase organ dose and blood cell DNA damage for a given X-ray exposure. The impact of ICM on dose/damage to extravascular cells and cancer risks is unclear. METHODS: We used Monte Carlo modelling to investigate the microscopic distribution of absorbed dose outside the lumen of arteries, capillaries and interstitial fluids containing blood and various concentrations of iodine. Models were irradiated with four X-ray spectra representing clinical procedures. RESULTS: For the artery model, The average dose enhancement factors (DEF) to blood were 1.70, 2.38, 7.38, and 12.34 for mass concentrations of iodine in blood (ρiI) of 5, 10, 50 and 100 mg/ml, respectively, compared to 0 mg/ml. Average DEFs were reduced to 1.26, 1.51, 3.48 and 5.56, respectively, in the first micrometre of the vessel wall, falling to 1.01, 1.02, 1.06 and 1.09 at 40-50 µm from the lumen edge. For the capillary models, DEF for extravascular tissues was on average 48% lower than DEF for the whole model, including capillaries. A similar situation was observed for the interstitial model, with DEF to the cell nucleus being 35% lower than DEF for the whole model. CONCLUSIONS: While ICM may modify the absorbed doses from diagnostic X-ray examinations, the effect is smaller than suggested by assays of circulating blood cells or blood dose enhancement. Conversely, the potentially large increase in dose to the endothelium of blood vessels means that macroscopic organ doses may underestimate the risk of radiation induced cardiovascular disease for ICM-enhanced exposures.


Assuntos
Artérias/diagnóstico por imagem , Capilares/diagnóstico por imagem , Meios de Contraste/química , Iodo/química , Doses de Radiação , Radiografia/métodos , Método de Monte Carlo , Radiometria
20.
Radiat Prot Dosimetry ; 179(4): 317-326, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342297

RESUMO

The goal in biological dosimetry is to estimate the dose of radiation that a suspected irradiated individual has received. For that, the analysis of aberrations (most commonly dicentric chromosome aberrations) in scored cells is performed and dose response calibration curves are built. In whole body irradiation (WBI) with X- and gamma-rays, the number of aberrations in samples is properly described by the Poisson distribution, although in partial body irradiation (PBI) the excess of zeros provided by the non-irradiated cells leads, for instance, to the Zero-Inflated Poisson distribution. Different methods are used to analyse the dosimetry data taking into account the distribution of the sample. In order to test the Poisson distribution against the Zero-Inflated Poisson distribution, several asymptotic and exact methods have been proposed which are focused on the dispersion of the data. In this work, we suggest an exact test for the Poisson distribution focused on the zero-inflation of the data developed by Rao and Chakravarti (Some small sample tests of significance for a Poisson distribution. Biometrics 1956; 12 : 264-82.), derived from the problems of occupancy. An approximation based on the standard Normal distribution is proposed in those cases where the computation of the exact test can be tedious. A Monte Carlo Simulation study was performed in order to estimate empirical confidence levels and powers of the exact test and other tests proposed in the literature. Different examples of applications based on in vitro data and also data recorded in several radiation accidents are presented and discussed. A Shiny application which computes the exact test and other interesting goodness-of-fit tests for the Poisson distribution is presented in order to provide them to all interested researchers.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Método de Monte Carlo , Distribuição de Poisson , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...