Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0349422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036346

RESUMO

Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Animais , Doença do Vírus de Marburg/diagnóstico por imagem , Doença do Vírus de Marburg/patologia , Projetos Piloto , Tomografia Computadorizada por Raios X , Progressão da Doença , Primatas
2.
Commun Biol ; 5(1): 1204, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352100

RESUMO

Despite increasing evidence that uveitis is common and consequential in survivors of Ebola virus disease (EVD), the host-pathogen determinants of the clinical phenotype are undefined, including the pathogenetic role of persistent viral antigen, ocular tissue-specific immune responses, and histopathologic characterization. Absent sampling of human intraocular fluids and tissues, these questions might be investigated in animal models of disease; however, challenges intrinsic to the nonhuman primate model and the animal biosafety level 4 setting have historically limited inquiry. In a rhesus monkey survivor of experimental Ebola virus (EBOV) infection, we observed and documented the clinical, virologic, immunologic, and histopathologic features of severe uveitis. Here we show the clinical natural history, resultant ocular pathology, intraocular antigen-specific antibody detection, and persistent intraocular EBOV RNA detected long after clinical resolution. The association of persistent EBOV RNA as a potential driver of severe immunopathology has pathophysiologic implications for understanding, preventing, and mitigating vision-threatening uveitis in EVD survivors.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Uveíte , Animais , Humanos , Doença pelo Vírus Ebola/complicações , Ebolavirus/fisiologia , Macaca mulatta , Uveíte/complicações , Uveíte/diagnóstico , RNA
3.
Acad Radiol ; 28 Suppl 1: S37-S44, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943333

RESUMO

With the advent of deep learning, convolutional neural networks (CNNs) have evolved as an effective method for the automated segmentation of different tissues in medical image analysis. In certain infectious diseases, the liver is one of the more highly affected organs, where an accurate liver segmentation method may play a significant role to improve the diagnosis, quantification, and follow-up. Although several segmentation algorithms have been proposed for liver or liver-tumor segmentation in computed tomography (CT) of human subjects, none of them have been investigated for nonhuman primates (NHPs), where the livers have a wide range in size and morphology. In addition, the unique characteristics of different infections or the heterogeneous immune responses of different NHPs to the infections appear with a diverse radiodensity distribution in the CT imaging. In this study, we investigated three state-of-the-art algorithms; VNet, UNet, and feature pyramid network (FPN) for automated liver segmentation in whole-body CT images of NHPs. The efficacy of the CNNs were evaluated on 82 scans of 37 animals, including pre and post-exposure to different viruses such as Ebola, Marburg, and Lassa. Using a 10-fold cross-validation, the best performance for the segmented liver was provided by the FPN; an average 94.77% Dice score, and 3.6% relative absolute volume difference. Our study demonstrated the efficacy of multiple CNNs, wherein the FPN outperforms VNet and UNet for liver segmentation in infectious disease imaging research.


Assuntos
Doenças Transmissíveis , Aprendizado Profundo , Animais , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Primatas
4.
Int J Comput Assist Radiol Surg ; 15(10): 1631-1638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32648161

RESUMO

PURPOSE: Certain viral infectious diseases cause systemic damage and the liver is an important organ affected directly by the virus and/or the hosts' response to the virus. Medical imaging indicates that the liver damage is heterogenous, and therefore, quantification of these changes requires analysis of the entire organ. Delineating the liver in preclinical imaging studies is a time-consuming and difficult task that would benefit from automated liver segmentation. METHODS: A nonhuman primate atlas-based liver segmentation method was developed to support quantitative image analysis of preclinical research. A set of 82 computed tomography (CT) scans of nonhuman primates with associated manual contours delineating the liver was generated from normal and abnormal livers. The proposed technique uses rigid and deformable registrations, a majority vote algorithm, and image post-processing operations to automate the liver segmentation process. This technique was evaluated using Dice similarity, Hausdorff distance measures, and Bland-Altman plots. RESULTS: Automated segmentation results compare favorably with manual contouring, achieving a median Dice score of 0.91. Limits of agreement from Bland-Altman plots indicate that liver changes of 3 Hounsfield units (CT) and 0.4 SUVmean (positron emission tomography) are detectable using our automated method of segmentation, which are substantially less than changes observed in the host response to these viral infectious diseases. CONCLUSION: The proposed atlas-based liver segmentation technique is generalizable to various sizes and species of nonhuman primates and facilitates preclinical infectious disease research studies. While the image analysis software used is commercially available and facilities with funding can access the software to perform similar nonhuman primate liver quantitative analyses, the approach can be implemented in open-source frameworks as there is nothing proprietary about these methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Hepatopatias/diagnóstico por imagem , Fígado/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Tomografia por Emissão de Pósitrons , Primatas , Pesquisa , Software
5.
bioRxiv ; 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32511338

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

6.
Comp Med ; 70(1): 87-92, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31948513

RESUMO

Guinea pigs are a premier small animal model for infectious disease research, and chronic indwelling venous access ports may be used to facilitate various procedures. Here we report catheter-related lesions in 5 uninfected Dunkin-Hartley guinea pigs with chronic jugular vein catheters used for imaging studies. Three guinea pigs were found dead with no premonitory signs. At necropsy, there was severe bilateral pulmonary atelectasis due to 20 to 29 mL of pleural effusion resulting from catheter-related thrombosis and cranial vena cava syndrome. In addition, one of these 3 guinea pigs had a polymicrobial catheter infection with abscessation. A 4th clinically normal guinea pig was euthanized at the end of the study, having spontaneously lost its catheter 7 mo prior, and had 17 mL of pleural effusion. The 5th guinea pig was euthanized following pooling of contrast material around the distal catheter in the cranial vena cava on CT. By histology, affected animals had recent and remote thrombosis or fibrosis (or both) of the cranial vena cava and right atrial wall, with osseous and cartilaginous metaplasia. Cranial vena cava syndrome should be considered as a differential for dyspnea or death in chronically catheterized laboratory animals.


Assuntos
Cateteres de Demora/efeitos adversos , Cobaias , Síndrome da Veia Cava Superior/etiologia , Animais , Cateterismo Venoso Central/efeitos adversos , Cateteres de Demora/veterinária , Feminino , Veias Jugulares , Masculino , Síndrome da Veia Cava Superior/veterinária
7.
Radiol Case Rep ; 14(10): 1272-1275, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31462952

RESUMO

During an infectious disease modeling study, a rhesus macaque (Macaca mulatta), experienced acute transient tachypnea including transient severe motion during the 70-second phases of serial contrast-enhanced magnetic resonance imaging of the abdomen. This same animal experienced transient severe motion during all but 2 of the 8 scans of the year-long study. This animal was the only animal in the study (1 of 12) to have this reaction to gadoxetate; the animal also vomited after the contrast injection once on day 146 of the study. On day 86, a different contrast agent (gadobutrol) was used, and the reaction did not occur. No treatment was required for any conditions relating to the reaction due to the self-limited nature. This type of reaction has not yet been reported in veterinary subjects before and is likely to be idiosyncratic after first exposure. However, this reaction should not be life threatening, and other contrast agents can be used if acute transient tachypnea does occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...