Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602589

RESUMO

The nature of the interaction of DNA with heteroleptic Ruthenium (II) Polypyridyl complexes of the type [Ru (A)2TPIP]2+, where TPIP = 2-(1-p-tolyl-1H pyrazol-4 -yl)-1H-imidazo [4, 5-f[1. 10] phenanthroline and A = 1,10 phenanthroline (1),4,4'-dimethyl-1,10-ortho Phenanthroline (2), 2,2' - bipyridine (3) and 4, 4' dimethyl 2, 2'- bipyridine (4), has been investigated by experimentaland molecular docking approaches. The order of the DNA binding affinities of the synthesised complexes is 1 > 2 > 3 > 4. The findings imply that the unsubstituted complex has a better affinity to bind with DNA than the substituted (dmp and dmb) emphasizing the significance of the auxiliary ligand. Additionally, as the medium's ionic strength drops, the DNA/Ru ratio rises, or when water is displaced by glycerol, the intercalation of complexes into DNA increases. DFT calculations at the B3LYP/LANL2MB level was used for molecular geometry (Ground State) and electronic characteristic calculations. The HOMO-LUMO gap of the Ru [II] complex is less than the intercalator and hence kinetically labile. Among the complexes, the bpy complex has shown utmost non-linear optical properties (α = -153.9099 10-24esu and ß = 3.8498 10-30esu). The docking study shows the significance of the Metal-intercalator's shorter length may increase DNA binding affinity. This study divulges that the Ruthenium (II) polypyridyl complexes bind to DNA preponderantly by intercalation supporting Viscosity studies. All the complexes have a considerable attraction for guanine. The standard disk diffusion method reveals that complexes (1, 2, 3 and 4) have good antibacterial activity.

2.
J Fluoresc ; 32(3): 1211-1228, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35353277

RESUMO

Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP = 2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A = bpy = bipyridyl (1), phen = 1,10 Phenanthroline (2), dmb = 4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp = 4,4'-dimethyl-1,10 -Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO-LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram-Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.


Assuntos
Fenantrolinas , Rutênio , Antibacterianos/química , Antibacterianos/farmacologia , DNA/química , Escherichia coli/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Fenantrolinas/química , Rutênio/química , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...