Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 584-596, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134667

RESUMO

HYPOTHESIS: Calcium carbonate (CaCO3) nanoparticles could have great potential for contrast-enhanced ultrasound imaging (CEUS) due to their gas-generating properties and sensitivity to physiological conditions. However, the use of nano CaCO3 for biomedical applications requires the assistance of stabilizers to control the size and avoid the fast dissolution/recrystallization of the particles when exposed to aqueous conditions. EXPERIMENTS: Herein, we report the stabilization of nano CaCO3 using lignin, and synthesized core-shell amorphous CaCO3-lignin nanoparticles (LigCC NPs) with a diameter below 100 nm. We have then investigated the echogenicity of the LigCC NPs by monitoring the consequent generation of contrast in vitro for 90 min in linear and non-linear B-mode imaging. FINDINGS: This research explores how lignin type and structure affect stabilization efficiency, lignin structuration around CaCO3 cores, and particle echogenicity. Interestingly, by employing lignin as the stabilizer, it becomes possible to maintain the echogenic properties of CaCO3, whereas the use of lipid coatings prevents the production of signal generation in ultrasound imaging. This work opens new avenue for CEUS imaging of the vascular and extravascular space using CaCO3, as it highlights the potential to generate contrast for extended durations at physiological pH by utilizing the amorphous phase of CaCO3.


Assuntos
Lignina , Nanopartículas , Nanopartículas/química , Ultrassonografia/métodos , Carbonato de Cálcio/química , Água
2.
EBioMedicine ; 91: 104578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086650

RESUMO

BACKGROUND: Estimation of glomerular function is necessary to diagnose kidney diseases. However, the study of glomeruli in the clinic is currently done indirectly through urine and blood tests. A recent imaging technique called Ultrasound Localization Microscopy (ULM) has appeared. It is based on the ability to record continuous movements of individual microbubbles in the bloodstream. Although ULM improved the resolution of vascular imaging up to tenfold, the imaging of the smallest vessels had yet to be reported. METHODS: We acquired ultrasound sequences from living humans and rats and then applied filters to divide the data set into slow-moving and fast-moving microbubbles. We performed a double tracking to highlight and characterize populations of microbubbles with singular behaviors. We decided to call this technique "sensing ULM" (sULM). We used post-mortem micro-CT for side-by-side confirmation in rats. FINDINGS: In this study, we report the observation of microbubbles flowing in the glomeruli in living humans and rats. We present a set of analysis tools to extract quantitative information from individual microbubbles, such as remanence time or normalized distance. INTERPRETATION: As glomeruli play a key role in kidney function, it would be possible that their observation yields a deeper understanding of the kidney. It could also be a tool to diagnose kidney diseases in patients. More generally, it will bring imaging capabilities closer to the functional units of organs, which is a key to understand most diseases, such as cancer, diabetes, or kidney failures. FUNDING: This study was funded by the European Research Council under the European Union Horizon H2020 program (ERC Consolidator grant agreement No 772786-ResolveStroke).


Assuntos
Nefropatias , Microscopia , Humanos , Ratos , Animais , Microscopia/métodos , Ultrassonografia/métodos , Glomérulos Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Meios de Contraste
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...