Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1203247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426811

RESUMO

The emerging concept of small conductance Ca2+-activated potassium channels (SKCa) as pharmacological target for cancer treatment has significantly increased in recent years. In this study, we isolated the P01 toxin from Androctonus australis (Aa) scorpion venom and investigated its effect on biological properties of glioblastoma U87, breast MDA-MB231 and colon adenocarcinoma LS174 cancer cell lines. Our results showed that P01 was active only on U87 glioblastoma cells. It inhibited their proliferation, adhesion and migration with IC50 values in the micromolar range. We have also shown that P01 reduced the amplitude of the currents recorded in HEK293 cells expressing SK2 channels with an IC50 value of 3 pM, while it had no effect on those expressing SK3 channels. The investigation of the SKCa channels expression pattern showed that SK2 transcripts were expressed differently in the three cancer cell lines. Particularly, we highlighted the presence of SK2 isoforms in U87 cells, which could explain and rely on the specific activity of P01 on this cell line. These experimental data highlighted the usefulness of scorpion peptides to decipher the role of SKCa channels in the tumorigenesis process, and develop potential therapeutic molecules targeting glioblastoma with high selectivity.

2.
Anal Chim Acta ; 1231: 340397, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36220288

RESUMO

Potassium ion channels are expressed on the cell membranes, implicated in wide variety of cell functions and intimately linked to cancer cell behaviors. This work reports the first bioplatform described to date allowing simple and rapid detection of ion channel activity and the effect of their inhibitors in cancer cells. The methodology involves interrogation of the channel of interest from cells specifically captured on magnetic immunoconjugates using specific detection antibodies that are labeled with horseradish peroxidase enzyme. The channel activity is reflected by an amperometric signal transduction of the resulting magnetic bioconjugates onto screen-printed carbon electrodes. The bioplatform feasibility was proven for the detection of the Kv channels in U87 human glioblastoma cells and their blocking by scorpion venom KAaH1 and KAaH2 peptides. The obtained results confirm the high sensitivity (detection of 5 U87 cells⋅mL-1 and 0.06 µg mL-1 of KAaH2) of the proposed bioplatform and their versatility to detect both potassium channel activity and their potential inhibitors, in a given cancer cell line, with high sensitivity in a simple and fast way. This bioplatform presents potential applications in cancer and theranostic of channelopathies.


Assuntos
Imunoconjugados , Neoplasias , Venenos de Escorpião , Carbono , Peroxidase do Rábano Silvestre , Humanos , Canais Iônicos , Neoplasias/tratamento farmacológico , Peptídeos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio , Venenos de Escorpião/farmacologia
3.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164071

RESUMO

Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Venenos de Escorpião/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Oligopeptídeos/química , Venenos de Escorpião/química , Escorpiões
4.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946686

RESUMO

Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Oligopeptídeos/farmacologia , Receptores de Formil Peptídeo/biossíntese , Receptores de Lipoxinas/biossíntese , Venenos de Escorpião/química , Proteína Supressora de Tumor p53/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Antineoplásicos/química , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Oligopeptídeos/química , Escorpiões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...