Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762559

RESUMO

The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.

2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511480

RESUMO

The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.


Assuntos
Glioblastoma , Nanopartículas , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Nanopartículas/química , Humanos , Glioblastoma/tratamento farmacológico , Administração Intranasal , Absorção Nasal , Linhagem Celular Tumoral , Animais , Ratos , Barreira Hematoencefálica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...