Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 860484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371170

RESUMO

Modern agriculture is facing multiple and complex challenges and has to produce more food and fiber to feed a growing population. Increasingly volatile weather and more extreme events such as droughts can reduce crop productivity. This implies the need for significant increases in production and the adoption of more efficient and sustainable production methods and adaptation to climate change. A new technological and environment-friendly management technique to improve the tolerance of quinoa grown to maturity is proposed using native microbial biostimulants (arbuscular mycorrhizal fungi; AMF) alone, in the consortium, or in combination with compost (Comp) as an organic matter source under two water treatments (normal irrigation and drought stress (DS)). Compared with controls, growth, grain yield, and all physiological traits under DS were significantly decreased while hydrogen peroxide, malondialdehyde, and antioxidative enzymatic functions were significantly increased. Under DS, biofertilizer application reverted physiological activities to normal levels and potentially strengthened quinoa's adaptability to water shortage as compared to untreated plants. The dual combination yielded a 97% improvement in grain dry weight. Moreover, the effectiveness of microbial and compost biostimulants as a biological tool improves grain quality and limits soil degradation under DS. Elemental concentrations, particularly macronutrients, antioxidant potential (1,1-diphenyl-2-picrylhydrazyl radical scavenging activity), and bioactive compounds (phenol and flavonoid content), were accumulated at higher levels in biofertilizer-treated quinoa grain than in untreated controls. The effects of AMF + Comp on post-harvest soil fertility traits were the most positive, with significant increases in total phosphorus (47%) and organic matter (200%) content under drought conditions. Taken together, our data demonstrate that drought stress strongly influences the physiological traits, yield, and quality of quinoa. Microbial and compost biostimulation could be an effective alternative to ensure greater recovery capability, thereby maintaining relatively high levels of grain production. Our study shows that aboveground stress responses in quinoa can be modulated by signals from the microbial/compost-treated root. Further, quinoa grains are generally of higher nutritive quality when amended and inoculated with AMF as compared to non-inoculated and compost-free plants.

2.
Plants (Basel) ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161374

RESUMO

The present study aimed to determine the effects of biostimulants on the physicochemical parameters of the agricultural soil of quinoa under two water regimes and to understand the mode of action of the biostimulants on quinoa for drought adaptation. We investigated the impact of two doses of vermicompost (5 and 10 t/ha) and arbuscular mycorrhizal fungi applied individually, or in joint application, on attenuating the negative impacts of water shortage and improving the agro-physiological and biochemical traits of quinoa, as well as soil fertility, under two water regimes (well-watered and drought stress) in open field conditions. Exposure to drought decreased biomass, leaf water potential, and stomatal conductance, and increased malondialdehyde and hydrogen peroxide content. Mycorrhiza and/or vermicompost promoted plant growth by activating photosynthesis machinery and nutrient assimilation, leading to increased total soluble sugars, proteins, and antioxidant enzyme activities in the leaf and root. After the experiment, the soil's total organic matter, phosphorus, nitrogen, calcium, and soil glomalin content improved by the single or combined application of mycorrhiza and vermicompost. This knowledge suggests that the combination of mycorrhiza and vermicompost regulates the physiological and biochemical processes employed by quinoa in coping with drought and improves the understanding of soil-plant interaction.

3.
Sci Rep ; 11(1): 22835, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819547

RESUMO

In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.


Assuntos
Compostagem , Secas , Fabaceae/crescimento & desenvolvimento , Micorrizas/fisiologia , Agricultura Orgânica , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Estado de Hidratação do Organismo , Estresse Oxidativo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Simbiose , Árvores/metabolismo , Árvores/microbiologia , Água/metabolismo
4.
Int J Phytoremediation ; 23(2): 190-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32755390

RESUMO

Soil pollution by heavy metals, in the last decades, has become a worldwide major concern for which finding a solution is becoming more important to conserve soil for future generations. This study used an ecotoxicology approach to evaluate the effectiveness of compost and arbuscular mycorrhizal fungus (AMF) and their combination on Medicago sativa performance grown under Zn and Cd stress. At 600 mg/kg of Cd and Zn, a reduction of mycorrhization frequency by 3.6- and 2-fold, respectively, was observed without applying compost. The effect of AMF-Compost combination on alfalfa biomass production was enhanced in the absence and the presence of heavy metals. An improvement of relative water content by 1.7- and 1.5-fold was recorded in case AMF-Compost plant treatments grown under 600 mg/kg of Cd and Zn, respectively. The application of AMF-compost enhanced the stomatal conductance and total chlorophyll in alfalfa plants. Sugar contents were significantly increased in mycorrhized and treated plants with compost compared to the control, regardless of the applied Cd or Zn dose. Phenol content was significantly increased in plants amended with compost alone and treated by Cd. Regarding Cd and Zn accumulation, AMF-compost combination reduced the content of heavy metals accumulated in M. sativa.


Assuntos
Compostagem , Micorrizas , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Medicago sativa , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Zinco
5.
Front Plant Sci ; 11: 516818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193464

RESUMO

Rainfall regimes are expected to shift on a regional scale as the water cycle intensifies in a warmer climate, resulting in greater extremes in dry versus wet conditions. Such changes are having a strong impact on the agro-physiological functioning of plants that scale up to influence interactions between plants and microorganisms and hence ecosystems. In (semi)-arid ecosystems, the date palm (Phoenix dactylifera L.) -an irreplaceable tree- plays important socio-economic roles. In the current study, we implemeted an adapted management program to improve date palm development and its tolerance to water deficit by using single or multiple combinations of exotic and native arbuscular mycorrhizal fungi (AMF1 and AMF2 respectively), and/or selected consortia of plant growth-promoting rhizobacteria (PGPR: B1 and B2), and/or composts from grasses and green waste (C1 and C2, respectively). We analyzed the potential for physiological functioning (photosynthesis, water status, osmolytes, mineral nutrition) to evolve in response to drought since this will be a key indicator of plant resilience in future environments. As result, under water deficit, the selected biofertilizers enhanced plant growth, leaf water potential, and electrical conductivity parameters. Further, the dual-inoculation of AMF/PGPR amended with composts alone or in combination boosted the biomass under water deficit conditions to a greater extent than in non-inoculated and/or non-amended plants. Both single and dual biofertilizers improved physiological parameters by elevating stomatal conductance, photosynthetic pigments (chlorophyll and carotenoids content), and photosynthetic efficiency. The dual inoculation and compost significantly enhanced, especially under drought stress, the concentrations of sugar and protein content, and antioxidant enzymes (polyphenoloxidase and peroxidase) activities as a defense strategy as compared with controls. Under water stress, we demonstrated that phosphorus was improved in the inoculated and amended plants alone or in combination in leaves (AMF2: 807%, AMF1+B2: 657%, AMF2+C1+B2: 500%, AMF2+C2: 478%, AMF1: 423%) and soil (AMF2: 397%, AMF1+B2: 322%, AMF2+C1+B2: 303%, AMF1: 190%, C1: 188%) in comparison with controls under severe water stress conditions. We summarize the extent to which the dual and multiple combinations of microorganisms can overcome challenges related to drought by enhancing plant physiological responses.

6.
Microorganisms ; 8(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143245

RESUMO

Salinity is one of the devastating abiotic stresses that cause reductions in agricultural production. The increased salinization affects alfalfa growth, metabolism, and rhizobium capacity for symbiotic N2 fixation negatively. This study was undertaken to investigate the efficiency of green compost (C; made from green waste), arbuscular mycorrhizal fungi (M; field-sourced native consortium), and/or rhizobium (R; a salt-tolerant rhizobium strain) individually or in combination as an effective strategy to improve alfalfa productivity under non-saline and high-saline (120 mM NaCl) conditions. In addition, we aimed to understand the agro-physiological and metabolic basis as well as glomalin content in the soil of biofertilizers-induced salt tolerance in alfalfa. Here, we show that mycorrhizal infection was enhanced after MR inoculation, while C application decreased it significantly. Salinity reduced growth, physiological functioning, and protein concentration, but the antioxidant system has been activated. Application of the selected biofertilizers, especially C alone or combined with M and/or R improved alfalfa tolerance. The tri-combination CMR mitigated the negative effects of high salinity by stimulating plant growth, roots and nodules dry matters, mineral uptake (P, N, and K), antioxidant system, synthesis of compatible solutes, and soil glomalin content, sustaining photosynthesis-related performance and decreasing Na+ and Cl- accumulation, lipid peroxidation, H2O2 content, and electrolyte leakage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...