Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 421(2): 232-8, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22497889

RESUMO

The ENH (PDLIM5) protein acts as a scaffold to tether various functional proteins at subcellular sites via PDZ and three LIM domains. Splicing of the ENH primary transcript generates various products with different repertories of protein interaction modules. Three LIM-containing ENH predominates in neonatal cardiac tissue, whereas LIM-less ENHs are abundant in adult hearts, as well as skeletal muscles. Here we examine the timing of splicing transitions of ENH gene products during postnatal heart development and C2C12 myoblast differentiation. Real-time PCR analysis shows that LIM-containing ENH1 mRNA is gradually decreased during postnatal heart development, whereas transcripts with the short exon 5 appear in the late postnatal period and continues to increase until at least one month after birth. The splicing transition from LIM-containing ENH1 to LIM-less ENHs is also observed during the early period of C2C12 differentiation. This transition correlates with the emergence of ENH transcripts with the short exon 5, as well as the expression of myogenin mRNA. In contrast, the shift from the short exon 5 to the exon 7 occurs in the late differentiation period. The timing of this late event corresponds to the appearance of mRNA for the skeletal myosin heavy chain MYH4. Thus, coordinated and stepwise splicing transitions result in the production of specific ENH transcripts in mature striated muscles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Proteínas dos Microfilamentos/genética , Desenvolvimento Muscular/genética , Músculo Estriado/crescimento & desenvolvimento , Splicing de RNA , Animais , Diferenciação Celular/genética , Linhagem Celular , Camundongos , Músculo Estriado/citologia , Mioblastos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley
2.
Nature ; 482(7385): 369-74, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266941

RESUMO

Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3 Å resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.


Assuntos
Cátions/metabolismo , Chlamydomonas reinhardtii/química , Ativação do Canal Iônico/efeitos da radiação , Canais Iônicos/química , Luz , Rodopsina/química , Animais , Bacteriorodopsinas/química , Sítios de Ligação , Bovinos , Chlamydomonas reinhardtii/genética , Cristalografia por Raios X , Canais Iônicos/genética , Canais Iônicos/efeitos da radiação , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/efeitos da radiação , Retinaldeído/metabolismo , Rodopsina/genética , Rodopsina/efeitos da radiação , Bases de Schiff/química , Eletricidade Estática
3.
FEBS Lett ; 585(24): 3903-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100296

RESUMO

Protein kinase D (PKD) regulates the activity of the L-type calcium channel in rat ventricular cardiomyocytes. However, the functional target residues of PKD on the L-type calcium channel remain to be identified. Our aim was to identify the functional phosphorylation sites of PKD on the human L-type calcium channel. The pore subunit of the human CaV1.2 (hCaV1.2) was stably expressed in HEK293 cells. Both the expression of a dominant-negative mutant of PKD and the mutation of serine 1884 but not serine 1930, putative targets of PKD, strongly reduced L-type calcium currents and single channel activity without affecting the channel's expression at the plasma membrane. Our results suggest that serine 1884 is essential for the regulation of hCaV1.2 by PKD.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Miocárdio/metabolismo , Proteína Quinase C/metabolismo , Serina , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio Tipo L/genética , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Ratos
4.
Dev Biol ; 347(1): 236-45, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20692249

RESUMO

The pelvic fin position among teleost fishes has shifted rostrally during evolution, resulting in diversification of both behavior and habitat. We explored the developmental basis for the rostral shift in pelvic fin position in teleost fishes using zebrafish (abdominal pelvic fins) and Nile tilapia (thoracic pelvic fins). Cell fate mapping experiments revealed that changes in the distribution of lateral plate mesodermal cells accompany the trunk-tail protrusion. Presumptive pelvic fin cells are originally located at the body wall adjacent to the anterior limit of hoxc10a expression in the spinal cord, and their position shifts rostrally as the trunk grows. We then showed that the differences in pelvic fin position between zebrafish and Nile tilapia were not due to changes in expression or function of gdf11. We also found that hox-independent motoneurons located above the pelvic fins innervate into the pelvic musculature. Our results suggest that there is a common mechanism among teleosts and tetrapods that controls paired appendage positioning via gdf11, but in teleost fishes the position of prospective pelvic fin cells on the yolk surface shifts as the trunk grows. In addition, teleost motoneurons, which lack lateral motor columns, innervate the pelvic fins in a manner independent of the rostral-caudal patterns of hox expression in the spinal cord.


Assuntos
Estruturas Animais/embriologia , Padronização Corporal , Ciclídeos/embriologia , Pelve/embriologia , Peixe-Zebra/embriologia , Estruturas Animais/citologia , Animais , Padronização Corporal/genética , Ciclídeos/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Músculos/inervação , Músculos/metabolismo , Pelve/inervação , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...