Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; : 101049, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878969

RESUMO

BACKGROUND: The Plaque at RISK (PARISK) study demonstrated that patients with a carotid plaque with intraplaque hemorrhage (IPH) have an increased risk of recurrent ipsilateral ischemic cerebrovascular events. It was previously reported that symptomatic carotid plaques with IPH showed higher IPH signal intensity ratios (SIR) and larger IPH volumes than asymptomatic plaques. We explored whether IPH SIR and IPH volume are associated with future ipsilateral ischemic cerebrovascular events beyond the presence of IPH. METHODS: TIA and ischemic stroke patients with mild-to-moderate carotid stenosis and an ipsilateral IPH-positive carotid plaque (n=89) from the PARISK study were included. The clinical endpoint was a new ipsilateral ischemic cerebrovascular event during 5 years of follow-up, while the imaging-based endpoint was a new ipsilateral brain infarct on brain MRI after 2 years (n=69). Trained observers delineated IPH, a hyperintense region compared to surrounding muscle tissue on hyper T1-weighted MR images. The IPH SIR was the maximal signal intensity in the IPH region divided by the mean signal intensity of adjacent muscle tissue. The associations between IPH SIR or volume and the clinical and imaging-based endpoint were investigated using Cox-proportional hazard models and logistic regression, respectively. RESULTS: During 5.1 (interquartile range (IQR): 3.1-5.6) years of follow-up, 21 ipsilateral cerebrovascular ischemic events were identified. Twelve new ipsilateral brain infarcts were identified on the 2-year neuro MRI. There was no association for IPH SIR or IPH volume with the clinical endpoint (HR: 0.89 [95% CI: 0.67-1.10] and HR: 0.91 [0.69-1.19] per 100µl increase, respectively) nor with the imaging-based endpoint (OR: 1.04 [0.75-1.45] and OR: 1.21 [0.87-1.68] per 100µl increase, respectively). CONCLUSIONS: IPH SIR and IPH volume were not associated with future ipsilateral ischemic cerebrovascular events. Therefore, quantitative assessment of IPH does not seem to provide additional value beyond the presence of IPH for stroke risk assessment. Trial registration The PARISK study was registered on ClinicalTrials.gov with ID NCT01208025 on 21 September 2010 (https://clinicaltrials.gov/study/NCT01208025).

2.
EJNMMI Phys ; 11(1): 36, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581561

RESUMO

PURPOSE: A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. METHODS: Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30-90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. RESULTS: A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. CONCLUSION: The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.

3.
Front Cardiovasc Med ; 10: 1227495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680565

RESUMO

Background and purpose: Carotid atherosclerotic plaques with a large lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and a thin or ruptured fibrous cap are associated with increased stroke risk. Multi-sequence MRI can be used to quantify carotid atherosclerotic plaque composition. Yet, its clinical implementation is hampered by long scan times and image misregistration. Multi-contrast atherosclerosis characterization (MATCH) overcomes these limitations. This study aims to compare the quantification of plaque composition with MATCH and multi-sequence MRI. Methods: MATCH and multi-sequence MRI were used to image 54 carotid arteries of 27 symptomatic patients with ≥2 mm carotid plaque on a 3.0 T MRI scanner. The following sequence parameters for MATCH were used: repetition time/echo time (TR/TE), 10.1/4.35 ms; field of view, 160 mm × 160 mm × 2 mm; matrix size, 256 × 256; acquired in-plane resolution, 0.63 mm2× 0.63 mm2; number of slices, 18; and flip angles, 8°, 5°, and 10°. Multi-sequence MRI (black-blood pre- and post-contrast T1-weighted, time of flight, and magnetization prepared rapid acquisition gradient echo; acquired in-plane resolution: 0.63 mm2 × 0.63 mm2) was acquired according to consensus recommendations, and image quality was scored (5-point scale). The interobserver agreement in plaque composition quantification was assessed by the intraclass correlation coefficient (ICC). The sensitivity and specificity of MATCH in identifying plaque composition were calculated using multi-sequence MRI as a reference standard. Results: A significantly lower image quality of MATCH compared to that of multi-sequence MRI was observed (p < 0.05). The scan time for MATCH was shorter (7 vs. 40 min). Interobserver agreement in quantifying plaque composition on MATCH images was good to excellent (ICC ≥ 0.77) except for the total volume of calcifications and fibrous tissue that showed moderate agreement (ICC ≥ 0.61). The sensitivity and specificity of detecting plaque components on MATCH were ≥89% and ≥91% for IPH, ≥81% and 85% for LRNC, and ≥71% and ≥32% for calcifications, respectively. Overall, good-to-excellent agreement (ICC ≥ 0.76) of quantifying plaque components on MATCH with multi-sequence MRI as the reference standard was observed except for calcifications (ICC = 0.37-0.38) and fibrous tissue (ICC = 0.59-0.70). Discussion and conclusion: MATCH images can be used to quantify plaque components such as LRNC and IPH but not for calcifications. Although MATCH images showed a lower mean image quality score, short scan time and inherent co-registration are significant advantages.

4.
J Clin Med ; 11(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566694

RESUMO

Carotid radiofrequency coils inside a PET/MRI system can result in PET quantification errors. We compared the performance of a dedicated PET/MRI carotid coil against a coil for MRI-only use. An 18F-fluorodeoxyglucose (18F-FDG) phantom was scanned without and with an MRI-only coil and with the PET/MRI coil. The decay-corrected normalized activity was compared for the different coil configurations. Eighteen patients were scanned with the three coil configurations. The maximal standardized uptake values (SUVmax) and signal-to-noise ratios (SNR) were calculated. Repeated measures ANOVA was performed to assess the differences in SUVmax and SNR between the coil configurations. In the phantom study, the PET/MRI coil demonstrated a slight decrease (<5%), while the MRI-only coil showed a substantial decrease (up to 10%) in normalized activity at the position of coil elements compared to no dedicated coil configuration. In the patient study, the SUVmax values for both no surface coil (3.59 ± 0.15) and PET/MRI coil (3.54 ± 0.15) were significantly higher (p = 0.03 and p = 0.04, respectively) as compared to the MRI-only coil (3.28 ± 0.16). No significant difference was observed between PET/MRI and no surface coil (p = 1.0). The SNR values for both PET/MRI (7.31 ± 0.44) and MRI-only (7.62 ± 0.42) configurations demonstrated significantly higher (p < 0.001) SNR values as compared to the no surface coil (3.78 ± 0.22), while no significant difference was observed in SNR between the PET/MRI and MRI-only coil (p = 1.0). This study demonstrated that the PET/MRI coil can be used for PET imaging without requiring attenuation correction while acquiring high-resolution MR images.

5.
Cardiovasc Diagn Ther ; 10(4): 1120-1139, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968664

RESUMO

Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...