Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(2): e08976, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35252601

RESUMO

The spatial and temporal variability of soil properties (fluid composition, structure, and water content) and hydrogeological properties employed for sustainable precision agriculture can be obtained from geoelectrical resistivity methods. For sustainable precision agricultural practices, site-specific information is paramount, especially during the planting season. An integrated one-dimensional (1D) and two-dimensional (2D) electrical resistivity survey have been adopted to characterize the subsoil parameters and delineate the aquifer unit of large farm areas, especially in precision agricultural practices. Also, contamination assessment reveals the soil quality status of farmlands. This study aims to determine the site-specific soil parameters of a commercial farm in Omu-Aran, Northcentral, Nigeria. The subsoil features from the geoelectrical resistivity surveys indicate 3 to 4 distinctive lithology to a depth of 43.4 m into the subsurface of the farm. The ID (Vertical Electrical Sounding) and 2D resistivity inversion models results have revealed the heterogeneity nature of the topsoil, also known as the stone zone comprising of reworked clayey soil and sandy gravelly soil, the weathered/saprolite zone (gravelly sandy/sandy soil), the fractured basement and the fresh basement rock. Contamination factor (Cf), pollution load index (PLI) and Nemerow integrated pollution index (NIPI) were used to assess the contamination index on the farmland. Toxic elements such as arsenic, cadmium, chromium, cobalt, lead, manganese, nickel, and zinc have low to moderate contamination in the farm. The depth of investigation (≤3m) covers the upper root zone of significant crops grown in the area. The findings can assess soil contamination, delineate basement features, subsoil variability, soil profiling, and determine the subsoil hydrological properties.

2.
Data Brief ; 17: 900-906, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876444

RESUMO

The dataset contains thermal properties of soil such as thermal conductivity, thermal diffusivity, temperature and specific heat capacity in an agricultural farm within the University of Ibadan, Ibadan, Nigeria. The data were acquired in forty (40) sampling points using thermal analyzer called KD-2 Pro. Soil samples taken at these sampling points were analyzed in the laboratory for their moisture content following the standard reference of American Association of State Highway and Transport Officials (AASHTO) T265. The data were acquired within the first and second weeks in the month of April, 2012. Statistical analyses were performed on the data set to understand the data. The data is made available publicly because thermal properties of soils have significant role in understanding the water retention capacity of soil and could be helpful for proper irrigation water management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...