Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867128

RESUMO

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Assuntos
Adesivos , Vidro , Oligopeptídeos , Adesivos/química , Vidro/química , Temperatura , Vitrificação , Água/química , Oligopeptídeos/química , Tirosina/química , Luz , Raios Infravermelhos
2.
ACS Nano ; 17(4): 3506-3517, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36745579

RESUMO

Molecular self- and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of l-histidine (l-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include l-His-containing materials, we explored the co-assembly of l-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine l-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between l-His and l-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between l-His and l-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of l-His and l-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between -N (l-His) and -NH (l-Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing l-His based on its specific interactions with l-Phe.


Assuntos
Histidina , Fenilalanina , Histidina/química , Fenilalanina/química , Aminoácidos/química , Aminoácidos Aromáticos , Triptofano/química
3.
Nanoscale Adv ; 5(2): 344-348, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756258

RESUMO

Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift. This behavior is uncommon in the field of organic supramolecular materials and could have implications in fields such as therapeutics of metabolic disorders and materials science.

4.
iScience ; 24(7): 102695, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258546

RESUMO

Luminescence of biomolecules in the visible range of the spectrum has been experimentally observed upon aggregation, contrary to their monomeric state. However, the physical basis for this phenomenon is still elusive. Here, we systematically examine all coded amino acids to provide non-biased empirical insights. Several amino acids, including non-aromatic, show intense visible luminescence. Lysine crystals display the highest signal, whereas the very chemically similar non-coded ornithine does not, implying a role for molecular packing rather than the chemical characteristics. Furthermore, cysteine shows luminescence that is indeed crystal packing dependent as repeated rearrangements between two crystal structures result in a reversible on-off optical transition. In addition, ultrafast lifetime decay is experimentally validated, corroborating a recently raised hypothesis regarding the governing role of nπ∗ states in the emission formation. Collectively, our study supports that electronic interactions between non-fluorescent, non-absorbing molecules at the monomeric state may result in reversible optically active states by the formation of supramolecular fluorophores.

5.
ACS Appl Mater Interfaces ; 12(40): 45192-45201, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924412

RESUMO

Framework materials have shown promising potential in various biological applications. However, the state-of-the-art components show low biocompatibility or mechanical instability, or cannot integrate both optics and electronics, thus severely limiting their extensive applications in biological systems. Herein, we demonstrate that amide-based bioorganic building blocks, including dipeptides and dipeptide nucleic acids, can self-assemble into hydrogen-bonded suprahelix architectures of controllable handedness, which then form suprahelical frameworks with diverse cavities. Especially, the cavities can be tuned to be hydrophilic or hydrophobic, and the shortest diagonal distance can be modulated from 0.5 to 1.8 nm, with the volume proportion in the unit cell changing from 5 to 60%. Furthermore, the hydrogen bonding networks result in high mechanical rigidity and semiconductively optoelectronic properties, which allow the utilization of the suprahelical frameworks as supramolecular scaffolds for artificial photosynthesis. Our findings reveal amide-based suprahelix architectures acting as bioinspired supramolecular frameworks, thus extending the constituents portfolio and increasing the feasibility of using framework materials for biological applications.


Assuntos
Amidas/química , Dipeptídeos/química , Ligação de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
Nat Commun ; 9(1): 3217, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104564

RESUMO

Quantum confined materials have been extensively studied for photoluminescent applications. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio-imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for these nanostructures, and their utilization for in vivo imaging and as phosphors for light-emitting diodes is demonstrated. The data reveal that the morphologies and optical properties of the aromatic cyclo-dipeptide self-assemblies can be tuned, making them potential candidates for supramolecular quantum confined materials providing biocompatible alternatives for broad biomedical and opto-electric applications.


Assuntos
Peptídeos/química , Pontos Quânticos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Linhagem Celular , Dimerização , Fluorescência , Humanos , Masculino , Camundongos Nus , Peptídeos Cíclicos/química , Pontos Quânticos/ultraestrutura
7.
J Nanopart Res ; 20(5)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30713467

RESUMO

Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semiconductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

8.
Science ; 358(6365)2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146781

RESUMO

Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems.

9.
ACS Appl Mater Interfaces ; 8(23): 14414-22, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27186957

RESUMO

Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of ß-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.


Assuntos
Portadores de Fármacos/química , Gossipol/química , Mitoxantrona/química , Nanopartículas/química , Dióxido de Silício/química , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Feminino , Humanos
10.
Small ; 11(30): 3654-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25903041

RESUMO

The K(+) /18-crown-6-(or [2.2.2] cryptand)-stimulated formation and dissociation of G-quadruplex nanostructures lead to the cyclic and switchable photonic and electrocatalytic molecular devices.


Assuntos
DNA/química , DNA/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/instrumentação , Quadruplex G , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Catálise , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Langmuir ; 31(7): 2237-42, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25664656

RESUMO

Anticancer drug gossypol cross-links phenylboronic acid-modified acrylamide copolymer chains to form a hydrogel matrix. The hydrogel is dissociated in an acidic environment (pH 4.5), and its dissociation is enhanced in the presence of lactic acid (an α-hydroxy carboxylic acid) as compared to formic acid. The enhanced dissociation of the hydrogel by lactic acid is attributed to the effective separation of the boronate ester bridging groups through the formation of a stabilized complex between the boronic acid substituent and the lactic acid. Because lactic acid exists in cancer cells in elevated amounts and the cancer cells' environment is acidic, the cross-linked hydrogel represents a stimuli-responsive matrix for the controlled release of gossypol. The functionality is demonstrated and characterized by rheology and other spectroscopic means.


Assuntos
Antineoplásicos/química , Ácidos Borônicos/química , Gossipol/química , Hidrogéis/química , Preparações de Ação Retardada/química , Formiatos/química , Concentração de Íons de Hidrogênio , Ácido Láctico/química
12.
J Am Chem Soc ; 135(32): 11832-9, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23841845

RESUMO

Hybrid systems consisting of nucleic-acid-functionalized silver nanoclusters (AgNCs) and graphene oxide (GO) are used for the development of fluorescent DNA sensors and aptasensors, and for the multiplexed analysis of a series of genes of infectious pathogens. Two types of nucleic-acid-stabilized AgNCs are used: one type includes the red-emitting AgNCs (616 nm) and the second type is near-infrared-emitting AgNCs (775 nm). Whereas the nucleic-acid-stabilized AgNCs do not bind to GO, the conjugation of single-stranded nucleic acid to the DNA-stabilized AgNCs leads to the adsorption of the hybrid nanostructures to GO and to the fluorescence quenching of the AgNCs. By the conjugation of oligonucleotide sequences acting as probes for target genes, or as aptamer sequences, to the nucleic-acid-protected AgNCs, the desorption of the probe/nucleic-acid-stabilized AgNCs from GO through the formation of duplex DNA structures or aptamer-substrate complexes leads to the generation of fluorescence as a readout signal for the sensing events. The hybrid nanostructures are implemented for the analysis of hepatitis B virus gene (HBV), the immunodeficiency virus gene (HIV), and the syphilis (Treponema pallidum) gene. Multiplexed analysis of the genes is demonstrated. The nucleic-acid-AgNCs-modified GO is also applied to detect ATP or thrombin through the release of the respective AgNCs-labeled aptamer-substrate complexes from GO.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/análise , Grafite/química , Nanoestruturas/química , Óxidos/química , Prata/química , Trombina/análise , Técnicas Biossensoriais/métodos , DNA Bacteriano/análise , DNA Viral/análise , HIV/genética , Vírus da Hepatite B/genética , Humanos , Limite de Detecção , Espectrometria de Fluorescência/métodos , Treponema pallidum/genética
13.
ACS Nano ; 6(4): 3553-63, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22404375

RESUMO

Graphene oxide (GO) is implemented as a functional matrix for developing fluorescent sensors for the amplified multiplexed detection of DNA, aptamer-substrate complexes, and for the integration of predesigned DNA constructs that activate logic gate operations. Fluorophore-labeled DNA strands acting as probes for two different DNA targets are adsorbed onto GO, leading to the quenching of the luminescence of the fluorophores. Desorption of the probes from the GO, through hybridization with the target DNAs, leads to the fluorescence of the respective label. By coupling exonuclease III, Exo III, to the system, the recycling of the target DNAs is demonstrated, and this leads to the amplified detection of the DNA targets (detection limit 5 × 10(-12) M). Similarly, adsorption of fluorophore-functionalized aptamers against thrombin or ATP onto the GO leads to the desorption of the aptamer-substrate complexes from GO and to the triggering of the luminescence corresponding to the respective fluorophore, thus, allowing the multiplexed analysis of the aptamer-substrate complexes. By designing functional fluorophore-labeled DNA constructs and their interaction with GO, in the presence (or absence) of nucleic acids, or two different substrates for aptamers, as inputs, the activation of the "OR" and "AND" logic gates is demonstrated.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Computadores Moleculares , DNA/metabolismo , Grafite/química , Lógica , Óxidos/química , Aptâmeros de Nucleotídeos/metabolismo , DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...