Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38124350

RESUMO

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Fucose/metabolismo , Plântula/metabolismo , Açúcares/metabolismo
2.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398095

RESUMO

Protein O-glycosylation is a nutrient-signaling mechanism that plays essential roles in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) catalyze posttranslational modifications of hundreds of intracellular proteins by O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation and loss of both SPY and SEC causes embryo lethality in Arabidopsis. Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a S PY O - f ucosyltransferase i nhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and caused phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defect in sugar-dependent growth. By contrast, SOFTI had no visible effect on the spy mutant. Similarly, SOFTI inhibited sugar-dependent growth of tomato seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor and a useful chemical tool for functional studies of O-fucosylation and potentially for agricultural management.

3.
Cell Rep ; 42(1): 111985, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640363

RESUMO

The generation of small interfering RNA (siRNA) involves many RNA processing components, including SUPPRESSOR OF GENE SILENCING 3 (SGS3), RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), and DICER-LIKE proteins (DCLs). Nonetheless, how these components are coordinated to produce siRNAs is unclear. Here, we show that SGS3 forms condensates via phase separation in vivo and in vitro. SGS3 interacts with RDR6 and drives it to form siRNA bodies in cytoplasm, which is promoted by SGS3-targeted RNAs. Disrupting SGS3 phase separation abrogates siRNA body assembly and siRNA biogenesis, whereas coexpression of SGS3 and RDR6 induces siRNA body formation in tobacco and yeast cells. Dysfunction in translation and mRNA decay increases the number of siRNA bodies, whereas DCL2/4 mutations enhance their size. Purification of SGS3 condensates identifies numerous RNA-binding proteins and siRNA processing components. Together, our findings reveal that SGS3 phase separation-mediated formation of siRNA bodies is essential for siRNA production and gene silencing.


Assuntos
Proteínas de Arabidopsis , RNA Interferente Pequeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA de Cadeia Dupla , Interferência de RNA , Inativação Gênica
4.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454752

RESUMO

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Assuntos
Arabidopsis , Ligases , Arabidopsis/genética , Ácidos Indolacéticos/farmacologia , Fenômenos Químicos , Reguladores de Crescimento de Plantas/farmacologia , Testes Genéticos
5.
Life (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013464

RESUMO

The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.

6.
J Exp Bot ; 73(1): 213-227, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34459884

RESUMO

The apical hook is indispensable for protecting the delicate shoot apical meristem while dicot seedlings emerge from soil after germination in darkness. The development of the apical hook is co-ordinately regulated by multiple phytohormones and environmental factors. Yet, a holistic understanding of the spatial-temporal interactions between different phytohormones and environmental factors remains to be achieved. Using a chemical genetic approach, we identified kinetin riboside, as a proxy of kinetin, which promotes apical hook development of Arabidopsis thaliana in a partially ethylene-signaling-independent pathway. Further genetic and biochemical analysis revealed that cytokinin is able to regulate apical hook development via post-transcriptional regulation of the PHYTOCHROME INTERACTING FACTORs (PIFs), together with its canonical roles in inducing ethylene biosynthesis. Dynamic observations of apical hook development processes showed that ETHYLENE INSENSITVE3 (EIN3) and EIN3-LIKE1 (EIL1) are necessary for the exaggeration of hook curvature in response to cytokinin, while PIFs are crucial for the cytokinin-induced maintenance of hook curvature in darkness. Furthermore, these two families of transcription factors display divergent roles in light-triggered hook opening. Our findings reveal that cytokinin integrates ethylene signaling and light signaling via EIN3/EIL1 and PIFs, respectively, to dynamically regulate apical hook development during early seedling development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Proteínas de Ligação a DNA/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...