Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 97: 105194, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968763

RESUMO

The increased resistance to the currently effective antimalarial drugs against Plasmodium falciparum has necessitated the development of new drugs for malaria treatment. Many proteins have been predicted using various means as potential drug targets for the treatment of the P. falciparum malaria infection. Meanwhile, only a few studies went on to predict the 3-dimensional (3D) structure of potential target. Therefore, this study aimed to predict potential antimalarial drug targets against the deadliest malaria parasite P. falciparum as well as to determine the 3D structure and possible inhibitors of one of the targets. We employed machine learning approach to predict suitable drug targets in P. falciparum. Five of the predicted protein targets were considered as potential drug targets as they were non-homologous to their human counterparts. Out of these, we determined the physicochemical properties, predicted the 3D structure and carried out docking-based virtual screening of P. falciparum RNA pseudouridylate synthase, putative (PfRPuSP). The PfRPuSP was one of the potential five target proteins. Homology modelling and the ab initio methods were used to predict the 3D structure of PfRPuSP. Then, a compound library of 5621 molecules was constructed from PubChem and ChEMBL databases using 5-fluorouridine as the control inhibitor. Docking-based virtual screening was performed using Autodock 4.2 and Autodock Vina to select compounds with high binding affinity. A total of 11 compounds were selected based on their binding energies from 881 compounds which were manually examined after docking. Seven of the 11 compounds that exhibited remarkable interactions with the residues in the active sites of PfRPuSP were analysed. These compounds performed favourably when compared to the control inhibitor and predicted to bind better than 5-fluorouridine. These seven compounds are suggested as new potential lead structures for antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Transferases Intramoleculares/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum/enzimologia
2.
Comput Struct Biotechnol J ; 19: 4581-4592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471501

RESUMO

Pathogens causing infections, and particularly when invading the host cells, require the host cell machinery for efficient regeneration and proliferation during infection. For their life cycle, host proteins are needed and these Host Dependency Factors (HDF) may serve as therapeutic targets. Several attempts have approached screening for HDF producing large lists of potential HDF with, however, only marginal overlap. To get consistency into the data of these experimental studies, we developed a machine learning pipeline. As a case study, we used publicly available lists of experimentally derived HDF from twelve different screening studies based on gene perturbation in Drosophila melanogaster cells or in vivo upon bacterial or protozoan infection. A total of 50,334 gene features were generated from diverse categories including their functional annotations, topology attributes in protein interaction networks, nucleotide and protein sequence features, homology properties and subcellular localization. Cross-validation revealed an excellent prediction performance. All feature categories contributed to the model. Predicted and experimentally derived HDF showed a good consistency when investigating their common cellular processes and function. Cellular processes and molecular function of these genes were highly enriched in membrane trafficking, particularly in the trans-Golgi network, cell cycle and the Rab GTPase binding family. Using our machine learning approach, we show that HDF in organisms can be predicted with high accuracy evidencing their common investigated characteristics. We elucidated cellular processes which are utilized by invading pathogens during infection. Finally, we provide a list of 208 novel HDF proposed for future experimental studies.

3.
Front Neurol ; 12: 600050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841294

RESUMO

Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.

4.
Plant J ; 107(1): 21-36, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837593

RESUMO

Plants are the world's most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population's increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.


Assuntos
Agricultura , Produtos Agrícolas/genética , Genoma de Planta , Genômica/tendências , África , Biotecnologia , Genômica/métodos , Medicina Herbária , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Plantas Medicinais/genética , Triticum/genética
5.
Parasit Vectors ; 13(1): 465, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912275

RESUMO

The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.


Assuntos
Anopheles/metabolismo , Anopheles/parasitologia , Proteínas de Insetos/metabolismo , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/metabolismo , Mosquitos Vetores/parasitologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Humanos , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/parasitologia , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Plasmodium/fisiologia
6.
Bioinform Biol Insights ; 13: 1177932219865533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31391779

RESUMO

Plasmodium falciparum adenylosuccinate lyase (PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from -6.85 to -8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.

7.
PLoS Negl Trop Dis ; 12(11): e0006949, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452443

RESUMO

BACKGROUND: Many arboviruses transmitted by mosquitoes have been implicated as causative agents of both human and animal illnesses in East Africa. Although epidemics of arboviral emerging infectious diseases have risen in frequency in recent years, the extent to which mosquitoes maintain pathogens in circulation during inter-epidemic periods is still poorly understood. This study aimed to investigate whether arboviruses may be maintained by vertical transmission via immature life stages of different mosquito vector species. METHODOLOGY: We collected immature mosquitoes (egg, larva, pupa) on the shores and islands of Lake Baringo and Lake Victoria in western Kenya and reared them to adults. Mosquito pools (≤25 specimens/pool) of each species were screened for mosquito-borne viruses by high-resolution melting analysis and sequencing of multiplex PCR products of genus-specific primers (alphaviruses, flaviviruses, phleboviruses and Bunyamwera-group orthobunyaviruses). We further confirmed positive samples by culturing in baby hamster kidney and Aedes mosquito cell lines and re-sequencing. PRINCIPAL FINDINGS: Culex univittatus (2/31pools) and Anopheles gambiae (1/77 pools) from the Lake Victoria region were positive for Bunyamwera virus, a pathogenic virus that is of public health concern. In addition, Aedes aegypti (3/50), Aedes luteocephalus (3/13), Aedes spp. (2/15), and Culex pipiens (1/140) pools were positive for Aedes flaviviruses at Lake Victoria, whereas at Lake Baringo, three pools of An. gambiae mosquitoes were positive for Anopheles flavivirus. These insect-specific flaviviruses (ISFVs), which are presumably non-pathogenic to vertebrates, were found in known medically important arbovirus and malaria vectors. CONCLUSIONS: Our results suggest that not only ISFVs, but also a pathogenic arbovirus, are naturally maintained within mosquito populations by vertical transmission, even in the absence of vertebrate hosts. Therefore, virus and vector surveillance, even during inter-epidemics, and the study of vector-arbovirus-ISFV interactions, may aid in identifying arbovirus transmission risks, with the potential to inform control strategies that lead to disease prevention.


Assuntos
Vírus Bunyamwera/fisiologia , Flavivirus/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/virologia , Vírus Bunyamwera/genética , Culex/crescimento & desenvolvimento , Culex/virologia , Feminino , Flavivirus/genética , Quênia , Larva/crescimento & desenvolvimento , Larva/virologia , Estágios do Ciclo de Vida , Masculino , Pupa/crescimento & desenvolvimento , Pupa/virologia , Especificidade da Espécie
8.
Front Vet Sci ; 4: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620610

RESUMO

Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April-May; October-December) of 2012-2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma, and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium, 9.06% Ehrlichia canis), anaplasmosis (6.32% Anaplasma ovis, 14.36% Anaplasma platys, and 3.08% Anaplasma bovis,), and rickettsiosis (6.15% Rickettsia africae, 2.22% Rickettsia aeschlimannii, 4.27% Rickettsia rhipicephali, and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi, and 1.37% Babesia caballi) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled from tortoises and Amblyomma sparsum (63.6%) sampled in both cattle and tortoises at Lake Baringo. Similarly, we identified E. canis in rhipicephaline ticks sampled from livestock and dogs in both regions and Amblyomma latum (75%) sampled from monitor lizards at Lake Victoria. These novel tick-host-pathogen interactions have implications on the risk of disease transmission to humans and domestic animals and highlight the complexity of TBP ecologies, which may include reptiles as reservoir species, in sub-Saharan Africa.

9.
F1000Res ; 5: 1949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703667

RESUMO

Mosquitoes are a diverse group of invertebrates, with members that are among the most important vectors of diseases. The correct identification of mosquitoes is paramount to the control of the diseases that they transmit. However, morphological techniques depend on the quality of the specimen and often unavailable taxonomic expertise, which may still not be able to distinguish mosquitoes among species complexes (sibling and cryptic species). High resolution melting (HRM) analyses, a closed-tube, post-polymerase chain reaction (PCR) method used to identify variations in nucleic acid sequences, has been used to differentiate species within the Anopheles gambiae and Culex pipiens complexes. We validated the use of PCR-HRM analyses to differentiate species within Anopheles and within each of six genera of culicine mosquitoes, comparing primers targeting cytochrome b ( cyt b), NADH dehydrogenase subunit 1 (ND1), intergenic spacer region (IGS) and cytochrome c oxidase subunit 1 ( COI) gene regions. HRM analyses of amplicons from all the six primer pairs successfully differentiated two or more mosquito species within one or more genera ( Aedes ( Ae. vittatus from Ae. metallicus), Culex ( Cx. tenagius from Cx. antennatus, Cx. neavei from Cx. duttoni, cryptic Cx. pipiens species), Anopheles ( An. gambiae s.s. from An. arabiensis) and Mansonia ( Ma. africana from Ma. uniformis)) based on their HRM profiles. However, PCR-HRM could not distinguish between species within Aedeomyia ( Ad. africana and Ad. furfurea), Mimomyia ( Mi. hispida and Mi. splendens) and Coquillettidia ( Cq. aurites, Cq. chrysosoma, Cq. fuscopennata, Cq. metallica, Cq. microannulatus, Cq. pseudoconopas and Cq. versicolor) genera using any of the primers. The IGS and COI barcode region primers gave the best and most definitive separation of mosquito species among anopheline and culicine mosquito genera, respectively, while the other markers may serve to confirm identifications of closely related sub-species. This approach can be employed for rapid identification of mosquitoes.

10.
J Med Entomol ; 53(6): 1348-1363, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27402888

RESUMO

The Lake Baringo and Lake Victoria regions of Kenya are associated with high seroprevalence of mosquito-transmitted arboviruses. However, molecular identification of potential mosquito vector species, including morphologically identified ones, remains scarce. To estimate the diversity, abundance, and distribution of mosquito vectors on the mainland shores and adjacent inhabited islands in these regions, we collected and morphologically identified adult and immature mosquitoes and obtained the corresponding sequence variation at cytochrome c oxidase 1 (COI) and internal transcribed spacer region 2 (ITS2) gene regions. A total of 63 species (including five subspecies) were collected from both study areas, 47 of which have previously been implicated as disease vectors. Fourteen species were found only on island sites, which are rarely included in mosquito diversity surveys. We collected more mosquitoes, yet with lower species composition, at Lake Baringo (40,229 mosquitoes, 32 species) than at Lake Victoria (22,393 mosquitoes, 54 species). Phylogenetic analysis of COI gene sequences revealed Culex perexiguus and Cx tenagius that could not be distinguished morphologically. Most Culex species clustered into a heterogeneous clade with closely related sequences, while Culex pipiens clustered into two distinct COI and ITS2 clades. These data suggest limitations in current morphological identification keys. This is the first DNA barcode report of Kenyan mosquitoes. To improve mosquito species identification, morphological identifications should be supported by their molecular data, while diversity surveys should target both adults and immatures. The diversity of native mosquito disease vectors identified in this study impacts disease transmission risks to humans and livestock.


Assuntos
Distribuição Animal , Culicidae/fisiologia , Variação Genética , Mosquitos Vetores/fisiologia , Animais , Biota , Culicidae/anatomia & histologia , Culicidae/genética , Culicidae/crescimento & desenvolvimento , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Proteínas de Insetos/genética , Ilhas , Quênia , Lagos , Larva/anatomia & histologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Filogenia , Densidade Demográfica , Pupa/anatomia & histologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Análise de Sequência de DNA
11.
PLoS One ; 10(7): e0134375, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230507

RESUMO

The blood-feeding patterns of mosquitoes are directly linked to the spread of pathogens that they transmit. Efficient identification of arthropod vector bloodmeal hosts can identify the diversity of vertebrate species potentially involved in disease transmission cycles. While molecular bloodmeal analyses rely on sequencing of cytochrome b (cyt b) or cytochrome oxidase 1 gene PCR products, recently developed bloodmeal host identification based on high resolution melting (HRM) analyses of cyt b PCR products is more cost-effective. To resolve the diverse vertebrate hosts that mosquitoes may potentially feed on in sub-Saharan Africa, we utilized HRM profiles of both cyt b and 16S ribosomal RNA genes. Among 445 blood-fed Aedeomyia, Aedes, Anopheles, Culex, Mansonia, and Mimomyia mosquitoes from Kenya's Lake Victoria and Lake Baringo regions where many mosquito-transmitted pathogens are endemic, we identified 33 bloodmeal hosts including humans, eight domestic animal species, six peridomestic animal species and 18 wildlife species. This resolution of vertebrate host species was only possible by comparing profiles of both cyt b and 16S markers, as melting profiles of some pairs of species were similar for either marker but not both. We identified mixed bloodmeals in a Culex pipiens from Mbita that had fed on a goat and a human and in two Mansonia africana mosquitoes from Baringo that each had fed on a rodent (Arvicanthis niloticus) in addition to a human or baboon. We further detected Sindbis and Bunyamwera viruses in blood-fed mosquito homogenates by Vero cell culture and RT-PCR in Culex, Aedeomyia, Anopheles and Mansonia mosquitoes from Baringo that had fed on humans and livestock. The observed mosquito feeding on both arbovirus amplifying hosts (including sheep and goats) and possible arbovirus reservoirs (birds, porcupine, baboons, rodents) informs arbovirus disease epidemiology and vector control strategies.


Assuntos
Animais Selvagens/genética , Infecções por Arbovirus/transmissão , Arbovírus/patogenicidade , Culicidae/virologia , Interações Hospedeiro-Patógeno , Insetos Vetores , Gado/genética , Animais , Infecções por Arbovirus/veterinária , Sangue , Humanos , Quênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...