Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 40(15): 3955-66, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21416079

RESUMO

In our hopes to improve the photocatalytic efficiency of photo-hydrogen-evolving molecular devices, several new dyads and triads possessing a photosensitizing Ru(bpy)(phen)(2)(2+) (or Ru(phen)(3)(2+)) chromophore (abbreviated as Ru(II)) attached to both/either a phenothiazine moiety (abbreviated as Phz) and/or H(2)-evolving PtCl(2)(bpy) units (abbreviated as Pt), such as Phz-Ru(II)-Pt2 (triad), Ru(II)-Pt2 (dyad), and Ru(II)-Pt3 (dyad), were synthesized and their basic properties together with the photo-hydrogen-evolving characteristics were investigated in detail. The (3)MLCT phosphorescence from the Ru(II) moiety in these systems is substantially quenched due to the highly efficient photoinduced electron transfer (PET). Based on the electrochemical studies, the driving forces for the PET were estimated as -0.07 eV for Phz-Ru(II)-Pt2, -0.24 eV for Ru(II)-Pt2, and -0.22 eV for Ru(II)-Pt3, revealing the exergonic character of the PET in these systems. Luminescence lifetime studies revealed the existence of more than two decay components, indicative of a contribution of multiple PET processes arising from the presence of at least two different conformers in solution. The major luminescence decay components of the hybrid systems [τ(1) = 6.5 ns (Ru(II)-Pt2) and τ(1) = 1.04 ns (Phz-Ru(II)-Pt2) in acetonitrile] are much shorter than those of Phz-free/Pt-free Ru(bpy)(phen)(2)(2+) derivatives. An important finding is that the triad Phz-Ru(II)-Pt2 affords a quite long-lived charge separated (CS) state (τ(CS) = 43 ns), denoted as Phz(+)˙-Ru(Red)-Pt2, as a result of reductive quenching of the triplet excited state of Ru(bpy)(phen)(2)(2+) by the tethering Phz moiety, where Ru(Red) denotes Ru(bpy)(phen)(2)(+). Moreover, the lifetime of Phz(+)˙-Ru(Red)-Pt2 was observed to be much longer than that of Phz(+)˙-Ru(Red). The photocatalytic H(2) evolution from water driven by these systems was examined in an aqueous acetate buffer solution (pH 5.0) containing 4-19% dimethylsulfoxide (solubilising reagent) in the presence of EDTA as a sacrificial electron donor. Dyads Ru(II)-Pt2 and Ru(II)-Pt3 were found to exhibit improved photo-hydrogen-evolving activity compared to the heterodinuclear Ru-Pt dyads developed so far in our group. On the other hand, almost no catalytic activity was observed for Phz-Ru(II)-Pt2 in spite of the formation of a strongly reducing Ru(Red) site (Phz(+)˙-Ru(Red)-Pt2), indicating that the electron transfer from the photogenerated Ru(Red) unit to the PtCl(2)(bpy) unit is not favoured presumably due to the slow electron transfer rate in the Marcus inverted region.

2.
Chemistry ; 17(4): 1148-62, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21243681

RESUMO

Three new [PtCl(2)(bpy)] derivatives tethered to 2, 4, and 6 dicationic viologen moieties, [PtCl(2)(MV2)](4+) (1), [PtCl(2)(MV4)](8+) (2), and [PtCl(2)(MV6)](12+) (3), have been synthesized (MV2(4+)=5-ethoxycarbamoyl-5'-(N-R(1)-carbamoyl)-2,2'-bipyridine, MV4(8+)=5,5'-bis(N-R(1)-carbamoyl)-2,2'-bipyridine, and MV6(12+)=5,5'-bis(N-R(2)-carbamoyl)-2,2'-bipyridine, in which R(1)=Asp(NH-VG)-NH-VG, R(2)=Asp(NH-VG)-Asp(NH-VG)-NH-VG, and VG=-(CH(2))(2)-(+)NC(5)H(4)-C(5)H(4)N(+)-CH(3)). In spite of the higher charge storage capacity of 2 and 3 due to the higher number of acceptor groups (VG groups), compound 1 with the lowest number of VG tethers has turned out to exhibit an outstanding catalytic performance towards the hydrogen evolution from water. Quantitative analysis of UV/Vis-NIR absorption spectral changes during the photolysis for 2 and 3 reveal that approximately 2 electrons per molecule are stored over the acceptor groups during the photolysis, and the storage events saturate after 20 min. As for 1, the total number of electrons stored per molecule increases once during the initial 10 min and then abruptly decreases down to around 0.1 electrons per molecule at 20 min, during which the storage is maximized at 10-20 min with 0.6-0.7 electrons stored per molecule, thereby indicating that the rates of radical formation and consumption are balanced during the photochemical hydrogen evolution reaction. The electrical conductivity measurements reveal that ion-pair adducts (adducts with PF(6)(-) ions in solution) are formed by 2 and 3 but are not given by 1 under the catalysis conditions. These, together with the results of molecular mechanics calculations, reveal that stack of two [PtCl(2)(bpy)] units becomes unfavorable as the number of sterically bulky and highly charged VG units per molecule increases. We have therefore concluded that dimerization that leads to the formation of a Pt-Pt association is a key step in the effective catalytic enhancement with [PtCl(2)(bpy)]-type catalysts.

3.
Dalton Trans ; 39(18): 4421-34, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20422100

RESUMO

Three 5,5'-disubstituted-2,2'-bipyridine ligands tethered to l-Asp-based peptide backbones having pendant viologen-modified branches, i.e., 5-ethoxycarbonyl-5'-(N-G(1)-carbamoyl)-2,2'-bipyridine ((4+)), 5,5'-bis(N-G(1)-carbamoyl)-2,2'-bipyridine ((8+)), and 5,5'-bis(N-G(2)-carbamoyl)-2,2'-bipyridine ((12+)), were prepared, where G(1) = Asp(NHG(3))-NHG(3), G(2) = Asp(NHG(3))-Asp(NHG(3))-NHG(3), and G(3) = -(CH(2))(2)-(+)NC(5)H(4)-C(5)H(4)N(+)-CH(3), i.e., 2-(1'-methyl-4,4'-bipyridinediium-1-yl)ethyl. These were reacted with cis-Ru(bpy)(2)Cl(2) to give three new dyads [Ru(bpy)(2)()](6+) ((6+)), [Ru(bpy)(2)()](10+) ((10+)), and [Ru(bpy)(2)()](14+) ((14+)), respectively, where bpy = 2,2'-bipyridine. All these dyads undergo extremely efficient intramolecular quenching leading to the formation of charge separated (CS) states (Ru(III)-MV(+) ), and display a triple exponential decay due to the presence of three classes of conformers with each exhibiting the individual rate of electron transfer. The lifetimes (contributions) were determined as 12.5 ps (94.2%), 791 ps (4.5%), and 18.3 ns (1.2%) for , 82.2 ps (79.9%), 1.12 ns (12.4%), and 4.60 ns (7.7%) for , and 43.6 ps (71.6%), 593 ps (20.2%), and 3.75 ns (8.1%) for . The forward electron transfer rate constants (k(ET)) for the major components were calculated as k(ET) = 8.3 x 10(10) s(-1) for , k(ET) = 1.2 x 10(10) s(-1) for , and k(ET) = 2.3 x 10(10) s(-1) for . Further, the lifetimes and quantum yields of charge separated states were determined as tau(CS) = 16 +/- 3 ns and Phi(CS) = 0.81 for , tau(CS) = 20 +/- 3 ns and Phi(CS) = 0.92 for , and tau(CS) = 20 +/- 3 ns and Phi(CS) = 0.64 for . The backward electron transfer rate constants (k(BET)) were also determined as 6.3 x 10(7), 5.0 x 10(7), and 5.0 x 10(7) s(-1) for , , and , respectively. From the analysis of electrical conductivity, the major ion-pair adducts in aqueous media were characterized as (PF(6))(5+) (52%) for , (PF(6))(2)(8+) (29%) and (PF(6))(3)(7+) (32%) for , and (PF(6))(3)(11+) (27%) and (PF(6))(4)(10+) (29%) for , at a total complex concentration of 0.04 mM. The present family is found to be the first example of a Ru(bpy)(3)(2+)-MV(2+) system in which three orders of magnitude of difference is achieved between the forward and backward electron transfer rate constants. These dyads were finally combined with a Pt(ii)-based H(2)-evolving catalyst, i.e., cis-diamminedichloroplatinum(ii), to ascertain the applicability of the system towards the visible light-induced water splitting processes.


Assuntos
Hidrogênio/química , Compostos Organometálicos/química , Peptídeos/química , Platina/química , Viologênios/química , Catálise , Transporte de Elétrons , Fotólise , Teoria Quântica
4.
Dalton Trans ; (7): 1180-6, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19322489

RESUMO

The design of a highly selective "turn-ON" luminescence chemodosimeter for Cu(2+) is reported. The design strategy made use of the ability of Cu(2+) ions to oxidize aromatic amines in acetonitrile solution. The aromatic amine employed here is a phenothiazine moiety which is covalently linked to one of the bipyridine units of Ru(bpy)(3)(2+). Excitation of the Ru(bpy)(3)(2+) leads to electron transfer from the phenothiazine moiety to the MLCT excited state of Ru(bpy)(3)(2+) which resulted in efficient quenching of the luminescence. In the presence of excess Cu(2+), phenothiazine moiety is oxidized to a stable entity which is incapable of electron donation to the MLCT excited state of Ru(bpy)(3)(2+). The emission of the Ru(bpy)(3)(2+) moiety is thus restored and we show that this strategy can be used as the basis for sensing micromolar amounts of Cu(2+). Only Cu(2+) is capable of this reaction, making this an interesting, hitherto unexplored strategy for the selective detection of micromolar amounts of Cu(2+).

5.
Photochem Photobiol Sci ; 7(7): 826-33, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18597031

RESUMO

Synthesis and photophysical properties of three Ru(bpy)(3)(2+)-Ptz (bpy = 2,2'-bipyridine and Ptz = phenothiazine) dyads, where the number of Ptz groups increased from one to three, are reported. The MLCT absorption bands of these compounds were slightly red shifted compared to Ru(bpy)(3)(2+). The emission, however, was highly quenched and this is attributed to electron transfer from the Ptz moiety to the excited Ru(bpy)(3)(2+) to generate the charge separated state Ru(bpy)(3)(+)-Ptz (+). Observed electron transfer rates (k(et) > 10(8) s(-1)) were much faster than those previously reported (k(et) < 10(7) s(-1)) for linked Ru(bpy)(3)(2+)-Ptz systems. Compared to the previous systems, back electron transfer rates in these systems were about 100 times slower. This has enabled us to observe the charge separated state in nanosecond flash photolysis experiments. Transient absorptions assignable to Ru(bpy)(3)(+) and Ptz (+), having lifetimes in the range of 10-30 ns were observed. In order to explain the fast charge separation and slow charge recombination rates, formation of a folded conformer where the Ptz group attached to one bpy residue comes closer to and associates with another bpy moiety was invoked. A scheme which explains the fast electron transfer and slow recombination in this pre-associated state is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...