Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Distrib Parallel Databases ; 37(2): 251-272, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31217669

RESUMO

Recent advancements in systematic analysis of high resolution whole slide images have increase efficiency of diagnosis, prognosis and prediction of cancer and important diseases. Due to the enormous sizes and dimensions of whole slide images, the analysis requires extensive computing resources which are not commonly available. Images have to be tiled for processing due to computer memory limitations, which lead to inaccurate results due to the ignorance of boundary crossing objects. Thus, we propose a generic and highly scalable cloud-based image analysis framework for whole slide images. The framework enables parallelized integration of image analysis steps, such as segmentation and aggregation of micro-structures in a single pipeline, and generation of final objects manageable by databases. The core concept relies on the abstraction of objects in whole slide images as different classes of spatial geometries, which in turn can be handled as text based records in MapReduce. The framework applies an overlapping partitioning scheme on images, and provides parallelization of tiling and image segmentation based on MapReduce architecture. It further provides robust object normalization, graceful handling of boundary objects with an efficient spatial indexing based matching method to generate accurate results. Our experiments on Amazon EMR show that MaReIA is highly scalable, generic and extremely cost effective by benchmark tests.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28770259

RESUMO

3D analytical pathology imaging examines high resolution 3D image volumes of human tissues to facilitate biomedical research and provide potential effective diagnostic assistance. Such approach - quantitative analysis of large-scale 3D pathology image volumes - generates tremendous amounts of spatially derived 3D micro-anatomic objects, such as 3D blood vessels and nuclei. Spatial exploration of such massive 3D spatial data requires effective and efficient querying methods. In this paper, we present a scalable and efficient 3D spatial query system for querying massive 3D spatial data based on MapReduce. The system provides an on-demand spatial querying engine which can be executed with as many instances as needed on MapReduce at runtime. Our system supports multiple types of spatial queries on MapReduce through 3D spatial data partitioning, customizable 3D spatial query engine, and implicit parallel spatial query execution. We utilize multi-level spatial indexing to achieve efficient query processing, including global partition indexing for data retrieval and on-demand local spatial indexing for spatial query processing. We evaluate our system with two representative queries: 3D spatial joins and 3D k-nearest neighbor query. Our experiments demonstrate that our system scales to large number of computing nodes, and efficiently handles data-intensive 3D spatial queries that are challenging in analytical pathology imaging.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24187650

RESUMO

Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

4.
Proc ACM SIGSPATIAL Int Conf Adv Inf ; 2013: 528-531, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27617325

RESUMO

The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

5.
Proc ACM SIGSPATIAL Int Conf Adv Inf ; 2012: 309-318, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24501719

RESUMO

Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...