Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258077

RESUMO

In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.

2.
AAPS PharmSciTech ; 23(8): 302, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385204

RESUMO

Progesterone (PRG) and testosterone (TST) were impregnated on mesoporous silica (ExP) particles via supercritical carbon dioxide (scCO2) processing at various pressures (10-18 MPa), temperatures (308.2-328.2 K), and time (30-360 min). The impact of a co-solvent on the impregnation was also studied at the best determined pressure and temperature. The properties of the drug embedded in silica particles were analysed via gas chromatography (GC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and nitrogen adsorption. An impregnation of 1 to 82 mg/g for PRG and 0.1 to 16 mg/g for TST was obtained depending on the processing parameters. There was a significant effect of pressure, time, and co-solvent on the impregnation efficiency. Generally, an increase in time and pressure plus the use of co-solvent led to an improvement in drug adsorption. Conversely, a rise in temperature resulted in lower impregnation of both TST and PRG on ExP. There was a substantial increase in the dissolution rate (> 90% drug release within the first 2 min) of both TST and PRG impregnated in silica particles when compared to the unprocessed drugs. This dissolution enhancement was attributed to the amorphisation of both drugs due to their adsorption on mesoporous silica.


Assuntos
Progesterona , Dióxido de Silício , Dióxido de Silício/química , Solubilidade , Dióxido de Carbono/química , Testosterona , Solventes/química
3.
Polymers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890600

RESUMO

The melting behaviour of the triblock polymers, Pluronic F38, F68, F77, F108, and F127, was investigated in pressurised CO2 and in the presence of menthol. The melting points of the polymers combined with 0, 10, 25, and 50 wt% of menthol were studied at atmospheric pressure and compared with those at 10 and 20 MPa in supercritical carbon dioxide (scCO2). The highest melting point depressions of 16.8 ± 0.5 °C and 29.0 ± 0.3 °C were observed at 10 and 20 MPa, respectively. The melting point of triblock polymers in pressurised CO2 was found to be dependent on molecular weight, poly(propylene oxide) (PPO) content, and menthol percentage. The melting point of most of the polymers studied in this work can be reduced to room temperature, which can be pivotal to the formulation development of thermolabile substances using these polymers.

4.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34577546

RESUMO

The study was designed to investigate the feasibility of supercritical carbon dioxide (scCO2) processing for the preparation of simvastatin (SIM) solid dispersions (SDs) in Soluplus® (SOL) at temperatures below polymer's glass transition. The SIM content in the SDs experimental design was kept at 10, 20 and 30% to study the effect of the drug-polymer ratio on the successful preparation of SDs. The SIM-SOL formulations, physical mixtures (PMs) and SDs were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and dissolution studies. The scCO2 processing conditions and drug-polymer ratio were found to influence the physicochemical properties of the drug in formulated SDs. SIM is a highly crystalline drug; however, physicochemical characterisation carried out by SEM, DSC, and XRD demonstrated the presence of SIM in amorphous nature within the SDs. The SIM-SOL SDs showed enhanced drug dissolution rates, with 100% being released within 45 min. Moreover, the drug dissolution from SDs was faster and higher in comparison to PMs. In conclusion, this study shows that SIM-SOL dispersions can be successfully prepared using a solvent-free supercritical fluid process to enhance dissolution rate of the drug.

5.
Drug Dev Ind Pharm ; 46(4): 576-586, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162557

RESUMO

The adsorption of γ-globulin was evaluated with experiments with silica particles marketed as Syloid AL1-FP (SAL), XDP-3150 (SXDP), and 244FP (SFP). The influence of pH, pore sizes, and degree of surface porosity on the extent of γ-globulin immobilization was examined. Protein adsorption on these particles was largely related to their surface porosity and pore sizes. The adsorption capacity was established to be greater with mesoporous SFP and SXDP particles at 474 and 377 mg/g, respectively, when compared to significantly low-porosity SAL (16 mg/g). Additionally, γ-globulin immobilization was favored at pH closer to iso-electric point. A key aim of this work was to better understand and improve the limited reversibility of protein adsorption. Protein desorption was found to be lower in simulated intestinal fluid (SIF) in comparison to pH 7.4 phosphate buffer (PB). The use of displacer molecules (sodium dodecyl sulfate [SDS]/Tween 80/Pluronic F127 [PF127]) promoted protein desorption from the adsorbent surface by the exchange mechanism. The PF127 provided substantial release in both studied condition but the highest release of 83% of γ-globulin from SXDP was obtained with tween 80 in PB. The released protein was analyzed with circular dichroism (CD) spectroscopy which indicated that the secondary structure of desorbed γ-globulin was dependent on the pH and displacer molecule. The conformation largely remained unchanged when desorption was carried out in SIF but changed markedly in PB specially in the presence of SDS.


Assuntos
Portadores de Fármacos/química , Dióxido de Silício/química , gama-Globulinas/administração & dosagem , Adsorção , Dicroísmo Circular , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Porosidade , Estrutura Secundária de Proteína , Solubilidade , Propriedades de Superfície , Tensoativos/química , Difração de Raios X , gama-Globulinas/química , gama-Globulinas/farmacocinética
6.
Drug Deliv Transl Res ; 8(6): 1790-1796, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-28828703

RESUMO

Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO2). The efficiency of the scCO2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Poliésteres/química , Pressão Atmosférica , Composição de Medicamentos , Emulsões , Nanopartículas , Tamanho da Partícula , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...