Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 209(Pt A): 1486-1497, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469949

RESUMO

Cellulose acetate (CA), one of the most important cellulose derivatives, is used in various applications especially in membranes, films, fibers, filters, and polymers. Because of the tough and flexible character and resistance to acids of CA, bacterial cellulose acetate (BCA) has been used as reinforcement for high performance separator purposes. In this study, BCA was synthesized through the heterogeneous acetylation in acetic solution with H2SO4 as catalyst by solution plasma process (SPP) of bacterial cellulose (BC) extracted form nata de coco waste. The SPP was considered as mild, simple, and fast method for many kinds of synthesis. The solution plasma time was studied to obtain considerably high DS values (in this work, DS = 1.95). The high DS values are an important feature when considering an environmental factor, good liquid transport and excellent absorption. Furthermore, the BCA incorporated with poly ether block amide by electrospinning method is successfully fabricated as nanofibrous membranes. The proposed PEBAX/BCA nanofibrous membranes display superior sufficient porosity (74.7%), exceptional liquid electrolyte uptake (364.6%), sufficient thermal dimensional stability at 150 °C, great electrochemical stability (discharge capacity at 0.2C = 102.14 mAh g-1), and high ionic conductivity (9.12 × 10-3 S/cm). Furthermore, the PEBAX/BCA nanofibrous membranes can be used as high-performance separators enhancing its safety for Li-ion battery applications.


Assuntos
Amidas , Cocos , Bactérias , Celulose/análogos & derivados , Íons , Lítio
2.
Int J Biol Macromol ; 164: 3580-3588, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890559

RESUMO

Bacterial cellulose nanocrystals (BCNCs) were extracted from nata de coco waste and underwent sulphuric acid (H2SO4) hydrolysis for use as a reinforcement giving thermal and dimensional stability to polyether block amide (PEBAX) as a polymer matrix for the fabrication of BCNCs/PEBAX microporous membranes. The H2SO4-hydrolysis of BCNCs yielded rod-like/needle-like BCNCs and negatively charged surfaces, resulting from the generated surface sulfate groups on the bacterial cellulose (BC), which may be competent for numerous applications. The non-solvent induced phase separating (NIPS) and subsequent film casting methods were used to prepare the BCNCs/PEBAX microporous membranes. The obtained films were characterized with regards to their structure in terms of the content of crystalline phases, as well as their ionic transport and performance at elevated temperatures. The presence of the BCNCs fillers resulted in a good thermal and dimensional stability up to 150 °C and correlated with no membrane shrinkage. For NIPS membranes, the formation of a rigid cellulosic network within the matrix was emphasized and attributed to the thermal stabilization at temperatures above the melting temperature. In addition, the wettability, ionic conductivity, and thermal stability were investigated in BCNCs/PEBAX membranes filled with different amounts of BCNCs. Thus, the BCNCs/PEBAX membranes derived via NIPS had a remarkably good ionic conductivity, within the range of 10-2-10-3 S/cm, with up to 56.8% porosity. Such porous membranes are considered as an important and interesting candidate for the replacement of the commercial polyolefin-based microporous separator in lithium-ion batteries due to their superior electrochemical performances and the observed reinforcement effect.


Assuntos
Bactérias/química , Celulose/química , Fontes de Energia Elétrica , Nanopartículas/química , Amidas/química , Condutividade Elétrica , Íons/química , Lítio/química , Polienos , Poliésteres/química , Porosidade , Ácidos Sulfúricos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...