Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Neurol ; 2014: 360978, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477708

RESUMO

This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain) were divided into four groups of five (n = 5) mice each. A set of mice (Nic) received subcutaneous nicotine (2.0 mg/kg) while a separate set (Cd) was treated with 2.0 mg/kg cadmium (subcutaneous). For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine and 2.0 mg/kg of Cd. Subsequently, a separate group of animals (n = 5; control) received normal saline. The total duration of treatment for all groups was 28 days (P28-P56). At P56, the treatment was discontinued, after which the animals were examined in behavioural tests. Nicotine and cadmium increased the metabolism and food intake in the female adolescent mice. This also corresponded to an increase in weight when compared with the control. However, a combined nicotine-cadmium treatment induced a decline in weight of the animals versus the control. Also, nicotine administration increased the motor function, while cadmium and nicotine-cadmium treatment caused a decline in motor activity. Both nicotine and cadmium induced a reduction in memory index; however, nicotine-cadmium treatment induced the most significant decrease in nonspatial working memory.


Assuntos
Cádmio/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nicotina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Agonistas Nicotínicos/farmacologia , Teste de Desempenho do Rota-Rod , Tabagismo/metabolismo , Tabagismo/fisiopatologia
2.
Pathophysiology ; 21(3): 199-209, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25156812

RESUMO

BACKGROUND: Vascular occlusion and cyanide neurotoxicity induces oxidative stress and degeneration in the brain. This oxidant induced stress changes the vascular dynamics of cerebral blood vessels, and participates in homeostatic response mechanisms which balance oxygen supply to hypoxic stress-sensitive neurons. The associated changes in vascular morphology include remodeling of the microvasculature and endothelial changes, alterations in regional circulation and variations in the blood brain barrier (BBB). This study compares alterations in physiology of the cerebral artery after a short-term oxidative stress induced by cyanide toxicity and vascular occlusion. METHOD: Adult Wistar rats (N=30) were divided into three groups; vascular occlusion (VO) (n=12), potassium cyanide administration (CN) (n=12) and Control-CO (n=6). The CN rates were treated with 30mg/kg of orally administered KCN while the VO was subjected to global vascular occlusion, both for a duration of 10 days, described as the treatment phase. Control animals were fed on normal rat chow and water for 10 days. At the end of the treatment phase, n=6 animals in each of the VO, CN and VO groups were anesthetized with sodium pentobarbital (50IP) and the CCA exposed, after which pin electrodes were implanted to record the spikes form the tunica media of the CCA. After day 10, treatment was discontinued for these animals, each remaining in the VO and CN groups (VO-I and CN-I) until day 20 (withdrawal phase) following which the spikes were recorded using the procedure described above. RESULTS/DISCUSSION: Vascular occlusion and cyanide toxicity increased vascular resistance in the MCA (reduced lumen thickness ratio) and increased the diameter of the CCA after the treatment phase of 10 days. After 10 days of withdrawal, the VO group showed a reduction in resistance and an increase in the lumen width/wall thickness ratio (LWR) while the CN group showed increased resistance and a reduction in LWR. CONCLUSION: Cyanide toxicity increased vascular resistance by inducing degenerative changes in the wall of the artery while vascular occlusion increased resistance through mechanical stress and increased thickness of arterial wall. After the withdrawal phase, vascular resistance diminished in the VO to a significantly greater extent than the CN.

3.
Pathophysiology ; 21(3): 191-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25127448

RESUMO

Although oxidative stress is characteristic of global vascular occlusion and cyanide toxicity, the pattern of cerebral metabolism reconditioning and rate of progression or reversal of neural tissue damage differ for both forms of ischemia. Thus, it is important to compare cognitive and motor functions in both models of ischemia involving cyanide treatment (CN) and vascular occlusion (VO). Adult Wistar rats (N=30) were divided into three groups; VO (n=12), CN (n=12) and Control-CO (n=6). The CN was treated with 30mg/Kg of potassium cyanide (KCN); VO was subjected to global vascular occlusion-both for duration of 10 days. The control (CO) was fed on normal rat chow and water for the same duration. At day 10, the test and control groups (CN, VO and CO) were subjected to motor function tests (Table edge tests and Open Field Test) and memory function tests (Y-Maze and Novel object recognition) while the withdrawal groups CN-I and VO-I were subjected to the same set of tests at day 20 (the withdrawal phase). The results show that both cyanide toxicity and vascular occlusion caused a decline in motor and memory function when compared with the control. Also, the cyanide treatment produced a more rapid decline in these behavioral parameters when compared with the vascular occlusion during the treatment phase. After the withdrawal phase, cyanide treatment (CN-I) showed either an improvement or restoration of motor and memory function when compared to the CN and control. Withdrawal of vascular occlusion caused no improvement, and in some cases a decline in motor and memory function. In conclusion, cyanide toxicity caused a decline in motor and memory function after the treatment while vascular occlusion caused no significant decline in cognition and motor function at this time. After the withdrawal phase, the effect of cyanide toxicity was reduced and significant improvements were observed in the behavioral tests (motor and cognitive), while a decline in these functions were seen in the vascular occlusion group after this phase.

4.
Metab Brain Dis ; 29(2): 483-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24218104

RESUMO

Glia activation and neuroinflamation are major factors implicated in the aetiology of most neurodegenerative diseases (NDDs). Several agents and toxins have been known to be capable of inducing glia activation an inflammatory response; most of which are active substances that can cause oxidative stress by inducing production of reactive oxygen species (ROS). Neurogenesis on the other hand involves metabolic and structural interaction between neurogenic and glia cells of the periventricular zone (PVZ); a region around the third ventricle. This study investigates glia activation (GFAP), cell proliferation (Ki-67) and neuronal metabolism (NSE) during neurogenesis and oxidative stress by comparing protein expression in the PVZ against that of the parietal cortex. Adult Wistar Rats were treated with normal saline and 20 mg/Kg KCN for 7 days. The tissue sections were processed for immunohistochemistry to demonstrate glia cells (anti Rat-GFAP), cell proliferation (anti Rat-Ki-67) and neuronal metabolism (anti Rat-NSE) using the antigen retrieval method. The sections from Rats treated with cyanide showed evidence of neurodegeneration both in the PVZ and cortex. The distribution of glia cells (GFAP), Neuron specific Enolase (NSE) and Ki-67 increased with cyanide treatment, although the increases were more pronounced in the neurogenic cell area (PVZ) when compared to the cortex. This suggests the close link between neuronal metabolism and glia activation both in neurogenesis and oxidative stress.


Assuntos
Neurogênese/fisiologia , Neuroglia/metabolismo , Estresse Oxidativo/fisiologia , Lobo Parietal/metabolismo , Animais , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lobo Parietal/citologia , Lobo Parietal/efeitos dos fármacos , Cianeto de Potássio/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...