Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 824: 146395, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35283227

RESUMO

One of the most prevailing primary brain tumors in adult human male is glioblastoma multiforme (GBM), which is categorized by rapid cellular growth. Even though the combination therapy comprises surgery, chemotherapy, and adjuvant therapies, the survival rate, on average, is 14.6 months. Glioma stem cells (GSCs) have key roles in tumorigenesis, progression, and defiance against chemotherapy and radiotherapy. In our study, firstly, the gene expression dataset GSE124145 was retrieved; the non-negative matrix factorization (NMF) method was applied on GBM dataset, and differentially expressed genes analysis (DEGs) was performed. After which, overlapping genes between metagenes and DEGs were detected to examine the Gene Ontology (GO) categories in the biological process (BP) in the stemness of GBM. The common hub genes were used to construct protein-protein interaction (PPI) network and further GO, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was utilized to pinpoint the real hub genes. The analysis of hub genes particular for the same GO categories demonstrated that specific hub genes triggered distinct features of the same biological processes. After utilizing GSE124145 and The Cancer Genome Atlas (TCGA) dataset for survival analysis, we screened five real hub genes: GUCA1A, RFC2, GNG11, MMP19, and NRG1, which are strongly associated with the progression and prognosis of GBM. The DEGs analysis revealed that all real hub genes were overexpressed in GBM and TCGA datasets, which further validates our results. The constructed study of PPI, GO, and KEGG pathway on common hub genes was performed. Finally, the KEGG pathways performed on the top 15 candidate hub genes (including six real hub genes) of the PPI network in the GBM gene expression dataset study found mitogen-activated protein kinase (Mapk) signaling pathway to be the most significant pathway. The rest of the hub genes reviewed throughout the analysis might be favorable targets for diagnosing and treating GBM and lower-grade gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Glioma/genética , Humanos , Masculino , Mapas de Interação de Proteínas/genética
2.
Exp Aging Res ; 45(2): 167-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849020

RESUMO

Background/study context: Empirical lifespan data sets are often studied with the best-fitted mathematical model for aging. Here, we studied how experimental noises can influence the determination of the best-fitted aging model. We investigated the influence of Gaussian white noise in lifespan data sets on the fitting outcomes of two-parameter Gompertz and Weibull mortality models, commonly adopted in aging research. METHODS: To un-equivocally demonstrate the effect of Gaussian white noises, we simulated lifespans based on Gompertz and Weibull models with added white noises. To gauge the influence of white noise on model fitting, we defined a single index, δLL , for the difference between the maximal log-likelihoods of the Weibull and Gompertz model fittings. We then applied the δLL approach using experimental replicative lifespan data sets for the laboratory BY4741 and BY4742 wildtype reference strains. RESULTS: We systematically evaluated how Gaussian white noise can influence the maximal likelihood-based comparison of the Gompertz and Weibull models. Our comparative study showed that the Weibull model is generally more tolerant to Gaussian white noise than the Gompertz model. The effect of noise on model fitting is also sensitive to model parameters. CONCLUSION: Our study shows that Gaussian white noise can influence the fitting of an aging model for yeast replicative lifespans. Given that yeast replicative lifespans are hard to measure and are often pooled from different experiments, our study highlights that interpreting model fitting results should take experimental procedure variation into account, and the best fitting model may not necessarily offer more biological insights.


Assuntos
Envelhecimento/fisiologia , Longevidade/fisiologia , Modelos Biológicos , Humanos , Funções Verossimilhança , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...