Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 792-801, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785128

RESUMO

Nonlinear silicon photonics offers unique abilities to generate, manipulate and detect optical signals in nano-devices, with applications based on field localization and large third order nonlinearity. However, at the nanoscale, inefficient nonlinear processes, absorption, and the lack of realistic models limit the nano-engineering of silicon. Here we report measurements of second and third harmonic generation from undoped silicon membranes. Using experimental results and simulations we identify the effective mass of valence electrons, which determines second harmonic generation efficiency, and oscillator parameters that control third order processes. We can then accurately predict the nonlinear optical properties of complex structures, without introducing and artificially separating the effective χ(2) into surface and volume contributions, and by simultaneously including effects of linear and nonlinear dispersions. Our results suggest that judicious exploitation of the nonlinear dispersion of ordinary semiconductors can provide reasonable nonlinear efficiencies and transformational device physics well into the UV range.

2.
Opt Express ; 29(6): 8581-8591, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820302

RESUMO

Understanding how light interacts with matter at the nanoscale is pivotal if one is to properly engineer nano-antennas, filters and other devices whose geometrical features approach atomic size. We report experimental results on second and third harmonic generation from 20 nm- and 70 nm-thick gold layers, for TE- and TM-polarized incident light pulses. We discuss the relative roles that bound electrons and an intensity dependent free electron density (hot electrons) play in third harmonic generation. While planar structures are generally the simplest to fabricate, metal layers that are only a few nanometers thick and partially transparent are almost never studied. Yet, transmission offers an additional reference point to compare experimental measurements with theoretical models. Our experimental results are explained well within the context of the microscopic hydrodynamic model that we employ to simulate second and third harmonic conversion efficiencies. Using our experimental observations we estimate ∣χ1064nm(3)∣≈10-18 (m/V)2, triggered mostly by hot electrons.

3.
Opt Express ; 26(14): 18055-18063, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114084

RESUMO

In the context of electromagnetism and nonlinear optical interactions, damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [Phys. Lett. A157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density and nonlocal contributions that stem from the spatial derivative of the magnetic field. We discuss the conditions that could modify both linear and nonlinear electromagnetic responses.

4.
Opt Express ; 23(16): 21032-42, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367955

RESUMO

We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.

5.
Opt Express ; 22(25): 31511-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607101

RESUMO

A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

6.
Sci Rep ; 3: 3203, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24220284

RESUMO

Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

7.
Sci Rep ; 2: 340, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22468227

RESUMO

Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific.

8.
Phys Rev Lett ; 89(14): 143901, 2002 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12366048

RESUMO

It is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch. A rich spatiotemporal propagation dynamics of the third-harmonic pulse is predicted. Potential applications of this phenomenon to other parametric processes are discussed.

9.
Artigo em Inglês | MEDLINE | ID: mdl-11088254

RESUMO

We use a variational method to study the phenomenon of intense femtosecond pulse propagation in air. This method allows us to obtain a semianalytical solution to the problem in which a wide range of initial conditions can be studied. In addition, it provides a simple physical interpertation, where the problem is reduced to an analogous problem of a particle moving in a potential well. Different types of possible solutions are considered, with focus upon the main physical interpretations. The results recapture at least qualitatively some of the major experimental observations, and previous numerical simulations.

10.
Phys Rev Lett ; 71(8): 1168-1171, 1993 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-10055467
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...