Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1392681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835751

RESUMO

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Doenças dos Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/imunologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/imunologia , Septicemia Hemorrágica/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Vacinação
2.
Virol J ; 20(1): 299, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102688

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease that affects the livelihoods and productivity of livestock farmers in endemic regions. It can infect various domestic and wild animals with cloven hooves and is caused by a virus belonging to the genus Aphthovirus and family Picornaviridae, which has seven different serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia-1. This paper aims to provide a comprehensive overview of the molecular epidemiology, economic impact, diagnosis, and control measures of FMD in Ethiopia in comparison with the global situation. The genetic and antigenic diversity of FMD viruses requires a thorough understanding for developing and applying effective control strategies in endemic areas. FMD has direct and indirect economic consequences on animal production. In Ethiopia, FMD outbreaks have led to millions of USD losses due to the restriction or rejection of livestock products in the international market. Therefore, in endemic areas, disease control depends on vaccinations to prevent animals from developing clinical disease. However, in Ethiopia, due to the presence of diverse antigenic serotypes of FMD viruses, regular and extensive molecular investigation of new field isolates is necessary to perform vaccine-matching studies to evaluate the protective potential of the vaccine strain in the country.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas , Animais , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Etiópia/epidemiologia , Epidemiologia Molecular , Surtos de Doenças , Sorogrupo , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
3.
Ir Vet J ; 75(1): 3, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241167

RESUMO

BACKGROUND: Bovine Respiratory Disease (BRD) is a multifactorial and economically important illness of cattle. The current study was designed to characterize the major bacterial pathogens associated with BRD and determine the antibiotic susceptibility patterns of isolates. Samples were collected from 400 pneumonic cases of cattle. RESULTS: Laboratory assay revealed isolation of 376 (94.0%) bacterial pathogens. The most prevalent bacterial pathogens recovered were Mannheimia haemolytica (M. haemolytica) followed by Pasteurella multocida (P. multocida), Histophilus somni (H. somni), and Bibersteinia trehalosi (B. trehalosi) from 191 (50.80%), 81 (21.54%), 56 (14.89%), and 48 (12.77%) samples, respectively. M. haemolytica strains were confirmed using multiplex PCR assay through the amplification of PHSSA (~ 325 bp) and Rpt2 (~ 1022 bp) genes. Capsular typing of P. multocida revealed amplification of serogroup A (hyaD-hyaC) gene (~ 1044 bp) and serogroup D (dcbF) gene (~ 657 bp). B. trehalosi isolates displayed amplification of the sodA gene (~ 144 bp). Besides, serotyping of M. haemolytica showed the distribution of serotype A:1 (82.20%), A:2 (10.47%), and A:6 (7.33%). Whereas, biotyping of P. multocida revealed a higher prevalence of biotype A:3 (83.95%), then A:1 (8.64%), A:2 (4.94%), and A:12 (2.47%). The majority of the retrieved isolates showed remarkable susceptibility to enrofloxacin, ciprofloxacin, sulfamethoxazole-trimethoprim, florfenicol, and ceftiofur (100%). Besides, varying degree of antimicrobial resistance was observed against streptomycin, gentamicin, penicillin-G, and ampicillin. CONCLUSIONS: The current findings confirmed that M. haemolytica (A:1) strain is the most common bacterial pathogen identified from BRD cases in the study areas of Ethiopia. Hence, continuous outbreak monitoring and evaluation of antibiotics susceptibility patterns of bacterial pathogens associated with BRD are indispensable to reduce the impact of BRD in the study areas. Further investigation of bacterial pathogens and genotypic analysis of pathogens from a wider area of the country is essential to design a cost-efficient control strategy.

4.
Anim Dis ; 1(1): 28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806086

RESUMO

Sheep pox, goat pox, and lumpy skin diseases are economically significant and contagious viral diseases of sheep, goats and cattle, respectively, caused by the genus Capripoxvirus (CaPV) of the family Poxviridae. Currently, CaPV infection of small ruminants (sheep and goats) has been distributed widely and are prevalent in Central Africa, the Middle East, Europe and Asia. This disease poses challenges to food production and distribution, affecting rural livelihoods in most African countries, including Ethiopia. Transmission occurs mainly by direct or indirect contact with infected animals. They cause high morbidity (75-100% in endemic areas) and mortality (10-85%). Additionally, the mortality rate can approach 100% in susceptible animals. Diagnosis largely relies on clinical symptoms, confirmed by laboratory testing using real-time PCR, electron microscopy, virus isolation, serology and histology. Control and eradication of sheep pox virus (SPPV), goat pox virus (GTPV), and lumpy skin disease (LSDV) depend on timely recognition of disease eruption, vector control, and movement restriction. To date, attenuated vaccines originating from KSGPV O-180 strains are effective and widely used in Ethiopia to control CaPV throughout the country. This vaccine strain is clinically safe to control CaPV in small ruminants but not in cattle which may be associated with insufficient vaccination coverage and the production of low-quality vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...