Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34351412

RESUMO

The neuroblast timer genes hunchback, Krüppel, nubbin and castor are expressed in temporal sequence in neural stem cells, and in corresponding spatial sequence along the Drosophila blastoderm. As canonical gap genes, hunchback and Krüppel play a crucial role in insect segmentation, but the roles of nubbin and castor in this process remain ambiguous. We have investigated the expression and functions of nubbin and castor during segmentation in the beetle Tribolium. We show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone, and that Tc-nubbin regulates segment identity redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Simultaneous knockdown of Tc-nubbin, Tc-giant and Tc-knirps results in the formation of ectopic legs on abdominal segments. This homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


Assuntos
Padronização Corporal/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Células-Tronco Neurais/metabolismo , Fatores do Domínio POU/genética , Tribolium/embriologia , Tribolium/genética , Animais , Blastoderma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Fatores do Domínio POU/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Development ; 146(18)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554626

RESUMO

There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by 'timing factor' wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.


Assuntos
Artrópodes/embriologia , Padronização Corporal , Animais , Evolução Biológica , Padronização Corporal/genética , Transdução de Sinais
3.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237851

RESUMO

Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metiltransferases/genética , Transdução de Sinais/genética , Animais , Artrópodes/genética , Artrópodes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metiltransferases/metabolismo , MicroRNAs
4.
Evodevo ; 8: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075435

RESUMO

BACKGROUND: There have been few studies of head patterning in non-insect arthropods, and even in the insects, much is not yet understood. In the fly Drosophila three head gap genes, orthodenticle (otd), buttonhead (btd) and empty spiracles (ems) are essential for patterning the head. However, they do not act through the same pair-rule genes that pattern the trunk from the mandibular segment backwards. Instead they act through the downstream factors collier (col) and cap'n'collar (cnc), and presumably other unknown factors. In the beetle Tribolium, these same gap and downstream genes are also expressed during early head development, but in more restricted domains, and some of them have been shown to be of minor functional importance. In the spider Parasteatoda tepidariorum, hedgehog (hh) and otd have been shown to play an important role in head segmentation. RESULTS: We have investigated the expression dynamics of otx (otd), SP5/btd, ems, and the downstream factors col, cnc and hh during early head development of the centipede Strigamia maritima. Our results reveal the process of head condensation and show that the anteroposterior sequence of specific gene expression is conserved with that in insects. SP5/btd and otx genes are expressed prior to and during head field formation, whereas ems is not expressed until after the initial formation of the head field, in an emerging gap between SP5/btd and otx expression. Furthermore, we observe an early domain of Strigamia hh expression in the head field that splits to produce segmental stripes in the ocular, antennal and intercalary segments. CONCLUSIONS: The dynamics of early gene expression in the centipede show considerable similarity with that in the beetle, both showing more localised expression of head gap genes than occurs in the fly. This suggests that the broad overlapping domains of head gap genes observed in Drosophila are derived in this lineage. We also suggest that the splitting of the early hh segmental stripes may reflect an ancestral and conserved process in arthropod head patterning. A remarkably similar stripe splitting process has been described in a spider, and in the Drosophila head hh expression starts from a broad domain that transforms into three stripes.

5.
Elife ; 52016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525481

RESUMO

The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.

6.
PLoS One ; 11(2): e0150292, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919730

RESUMO

We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.


Assuntos
Artrópodes/genética , Processos de Determinação Sexual/genética , Cromossomo X , Cromossomo Y , Animais , Artrópodes/embriologia , Artrópodes/crescimento & desenvolvimento , Artrópodes/fisiologia , Hibridização Genômica Comparativa , Feminino , Hibridização in Situ Fluorescente , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Cromossomo X/ultraestrutura , Cromossomo Y/ultraestrutura
7.
Philos Trans R Soc Lond B Biol Sci ; 370(1666)2015 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25750244

RESUMO

Sidnie Manton became best known for her work on arthropod locomotion, and for proposing radical views on the evolution of arthropods that were accepted for a generation. However, her early training was as an embryologist, and the work that she carried out at the beginning of her career still stands as one of the major twentieth century contributions to the study of crustacean embryology. Here, I review her first major paper, largely completed while she was a graduate student, describing embryonic development in Hemimysis lamornae, a small shrimp-like animal found in the seas around the UK. The clarity of her writing and the quality of her figures set a standard that laid the basis for subsequent work, and although not all of her conclusions have stood the test of time, they remain a standard reference for work today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.


Assuntos
Crustáceos/embriologia , Embriologia/história , Animais , História do Século XX
8.
Dev Biol ; 396(1): 136-49, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263198

RESUMO

The apical plate of primary marine larvae is characterized by a common set of transcription factors comprising six3, rx, hbn, nk2.1 and FoxQ2. It harbours the apical organ, a neural and ciliary structure with neurosecretory properties. Recent studies in lophotrochozoans have found that apical organ cells form the anterior tip of the developing central nervous system. We identify an anterior medial tissue in the embryonic centipede head that shares the transcriptional profile of the apical plate of marine larvae, including nested domains of FoxQ2 and six3 expression. This domain gives rise to an anterior medial population of neural precursors distinct from those arising within the segmental neuroectoderm. These medial cells do not express achaete scute homologue in proneural clusters, but express collier, a marker for post mitotic cells committed to a neural fate, while they are still situated in the surface ectodermal layer. They then sink under the surface to form a compact cell cluster. Once internalized these cells extend axons that pioneer the primary axonal scaffold of the central nervous system. The same cells express phc2, a neural specific prohormone convertase, which suggests that they form an early active neurosecretory centre. Some also express markers of hypothalamic neurons, including otp, vtn and vax1. These medial neurosecretory cells of the centipede are distinct from those of the pars intercerebralis, the anterior neurosecretory part of the insect brain. The pars intercerebralis derives from vsx positive placodal-like invagination sites. In the centipede, vsx expressing invaginating ectoderm is situated bilaterally adjacent to the medial pioneer cell population. Hence the pars intercerebralis is present in both insect and centipede brains, whereas no prominent anterior medial cluster of pioneer neurons is present in insects. These observations suggest that the arthropod brain retained ancestrally an anterior medial population of neurosecretory cells homologous to those of the apical plate in other invertebrate phyla, but that this cell population has been lost or greatly reduced in insects.


Assuntos
Artrópodes/embriologia , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Axônios/fisiologia , Blastoderma/fisiologia , Encéfalo/embriologia , Diferenciação Celular , Linhagem da Célula , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Hipotálamo/embriologia , Larva/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fatores de Tempo , Transcrição Gênica , Proteína Homeobox SIX3
9.
Dev Biol ; 392(2): 419-30, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24930702

RESUMO

We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.


Assuntos
Artrópodes/embriologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/fisiologia , Animais , Artrópodes/citologia , Biomarcadores/metabolismo , Blastoderma/citologia , Blastoderma/fisiologia , Primers do DNA/genética , Embrião não Mamífero , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Hibridização In Situ , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escócia , Especificidade da Espécie , Transcriptoma/genética
10.
Evodevo ; 5(1): 2, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24398075

RESUMO

BACKGROUND: In Drosophila and many other insects, the Hox genes Ultrabithorax (Ubx) and abdominal-A (abd-A) suppress limb formation on most or all segments of the abdomen. However, a number of basal hexapod lineages retain multiple appendages on the abdomen. In the collembolans or springtails, three abdominal segments develop specialized organs that originate from paired appendage primordia which fuse at the midline: the first abdominal segment bears the collophore (ventral tube), involved in osmoregulation; the fourth segment bears the furca, the leaping organ, and the third segment bears the retinaculum, which retains the furca at rest. Ubx and abd-A are known to be expressed in the springtail abdomen, but what role they play in specifying these distinct abdominal appendages is not known. This is largely because no genetic model has been established in collembolans or any other non-insect hexapod. RESULTS: We have developed a convenient method for laboratory culture of the collembolan Orchesella cincta on defined media, a method for in-situ hybridization to embryos and a procedure for gene knockdown by parental injection of double-stranded RNA (RNAi). We show that Orchesella Ubx transcripts are detectable in the first to third abdominal segments, and abd-A transcripts in the second to fourth segments. Knockdown of Oc-Ubx leads to the homeotic transformation of the collophore into a pair of walking legs (a more anterior identity) but the retinaculum into a furca (a more posterior identity). Knockdown of Oc-abd-A leads to the transformation of the retinaculum into a collophore and of the furca into legs (both anterior transformations). Simultaneous silencing of both Oc-Ubx and Oc-abd-A transformed all three of these appendages into paired legs, but did not cause appendages to develop on the second, or on the most posterior abdominal segments. CONCLUSIONS: We conclude that, in Orchesella, Oc-Ubx alone specifies the collophore on the first and Oc-abd-A alone specifies the furca on the fourth abdominal segment. Oc-Ubx and Oc-abd-A function together, apparently combinatorially, to specify the retinaculum on the third segment. The efficiency of RNAi in Orchesella makes this an attractive model for further genetic studies of development and physiology in basal hexapods.

11.
Evodevo ; 5(1): 1, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24393251

RESUMO

BACKGROUND: Comparative studies of developmental processes are one of the main approaches to evolutionary developmental biology (evo-devo). Over recent years, there has been a shift of focus from the comparative study of particular regulatory genes to the level of whole gene networks. Reverse-engineering methods can be used to computationally reconstitute and analyze the function and dynamics of such networks. These methods require quantitative spatio-temporal expression data for model fitting. Obtaining such data in non-model organisms remains a major technical challenge, impeding the wider application of data-driven mathematical modeling to evo-devo. RESULTS: We have raised antibodies against four segmentation gene products in the moth midge Clogmia albipunctata, a non-drosophilid dipteran species. We have used these antibodies to create a quantitative atlas of protein expression patterns for the gap gene hunchback (hb), and the pair-rule gene even-skipped (eve). Our data reveal differences in the dynamics of Hb boundary positioning and Eve stripe formation between C. albipunctata and Drosophila melanogaster. Despite these differences, the overall relative spatial arrangement of Hb and Eve domains is remarkably conserved between these two distantly related dipteran species. CONCLUSIONS: We provide a proof of principle that it is possible to acquire quantitative gene expression data at high accuracy and spatio-temporal resolution in non-model organisms. Our quantitative data extend earlier qualitative studies of segmentation gene expression in C. albipunctata, and provide a starting point for comparative reverse-engineering studies of the evolutionary and developmental dynamics of the segmentation gene system.

12.
BMC Biol ; 11: 112, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24289308

RESUMO

BACKGROUND: Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS: Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS: Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.


Assuntos
Artrópodes/embriologia , Artrópodes/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas de Artrópodes/genética , Relógios Biológicos/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Desenvolvimento Embrionário/genética , Éxons , Feminino , Proteínas de Homeodomínio/genética , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Transdução de Sinais
13.
Evodevo ; 4(1): 22, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23919293

RESUMO

BACKGROUND: Most geophilomorph centipedes show intraspecific variability in the number of leg-bearing segments. This intraspecific variability generally has a component that is related to sex, with females having on average more segments than males. Neither the developmental basis nor the adaptive role of this dimorphism is known. RESULTS: To determine when this sexual dimorphism in segment number is established, we have followed the development of Strigamia maritima embryos from the onset of segmentation to the first post-embryonic stage where we could determine the sex morphologically. We find that males and females differ in segment number by Stage 6.1, a point during embryogenesis when segment addition pauses while the embryo undergoes large-scale movements. We have confirmed this pattern by establishing a molecular method to determine the sex of single embryos, utilising duplex PCR amplification for Y chromosomal and autosomal sequences. This confirms that male embryos have a modal number of 43 segments visible at Stage 6, while females have 45. In our Strigamia population, adult males have a modal number of 47 leg-bearing segments, and females have 49. This implies that the sexual dimorphism in segment number is determined before the addition of the last leg-bearing segments and the terminal genital segments. CONCLUSIONS: Sexual dimorphism in segment number is not associated with terminal segment differentiation, but must instead be related to some earlier process during segment patterning. The dimorphism may be associated with a difference in the rate and/or duration of segment addition during the main phase of rapid segment addition that precedes embryonic Stage 6. This suggests that the adaptive role, if any, of the dimorphism is likely to be related to segment number per se, and not to sexual differentiation of the terminal region.

14.
Dev Biol ; 382(1): 235-45, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810931

RESUMO

Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism.


Assuntos
Anelídeos/embriologia , Anelídeos/genética , Evolução Molecular , Redes Reguladoras de Genes , Animais , Padronização Corporal/genética , Sequência Conservada , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo
15.
Development ; 140(15): 3210-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23861059

RESUMO

Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.


Assuntos
Tribolium/embriologia , Âmnio/embriologia , Animais , Animais Geneticamente Modificados , Blastoderma/citologia , Blastoderma/embriologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Corantes Fluorescentes/administração & dosagem , Técnicas de Silenciamento de Genes , Genes de Insetos , Proteínas Luminescentes/administração & dosagem , Microinjeções , Modelos Biológicos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Tribolium/citologia , Tribolium/genética , Saco Vitelino/embriologia
16.
PLoS One ; 8(4): e61732, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593495

RESUMO

BACKGROUND: Cultures of heterotrophic protists often require co-culturing with bacteria to act as a source of nutrition. Such cultures will contain varying levels of intrinsic bacterial contamination that can interfere with molecular research and cause problems with the collection of sufficient material for sequencing. Measuring the levels of bacterial contamination for the purposes of molecular biology research is non-trivial, and can be complicated by the presence of a diverse bacterial flora, or by differences in the relative nucleic acid yield per bacterial or eukaryotic cell. PRINCIPAL FINDINGS: Here we describe a duplex PCR-based assay that can be used to measure the levels of contamination from marine bacteria in a culture of loricate choanoflagellates. By comparison to a standard culture of known target sequence content, the assay can be used to quantify the relative proportions of bacterial and choanoflagellate material in DNA or RNA samples extracted from a culture. We apply the assay to compare methods of purifying choanoflagellate cultures prior to DNA extraction, to determine their effectiveness in reducing bacterial contamination. Together with measurements of the total nucleic acid concentration, the assay can then be used as the basis for determining the absolute amounts of choanoflagellate DNA or RNA present in a sample. CONCLUSIONS: The assay protocol we describe here is a simple and relatively inexpensive method of measuring contamination levels in nucleic acid samples. This provides a new way to establish quantification and purification protocols for molecular biology and genomics in novel heterotrophic protist species. Guidelines are provided to develop a similar protocol for use with any protistan culture. This assay method is recommended where qPCR equipment is unavailable, where qPCR is not viable because of the nature of the bacterial contamination or starting material, or where prior sequence information is insufficient to develop qPCR protocols.


Assuntos
Contaminação por DNA , DNA Bacteriano/análise , Eucariotos/citologia , Reação em Cadeia da Polimerase/métodos , Antibacterianos/farmacologia , Células Cultivadas , DNA Complementar/genética , Eucariotos/efeitos dos fármacos , Filtração , Plasmídeos/genética , Padrões de Referência , Reprodutibilidade dos Testes , Moldes Genéticos
17.
Proc Biol Sci ; 280(1756): 20122543, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23407828

RESUMO

Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Coanoflagelados/metabolismo , Silício/metabolismo , Sequência de Aminoácidos , Transporte Biológico/genética , Coanoflagelados/genética , Sequência Conservada , Diatomáceas/metabolismo , Evolução Molecular , Transferência Genética Horizontal , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
18.
Dev Biol ; 377(1): 305-17, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333944

RESUMO

Developmental processes are robust, or canalised: dynamic patterns of gene expression across space and time are regulated reliably and precisely in the presence of genetic and environmental perturbations. It remains unclear whether canalisation relies on specific regulatory factors (such as heat-shock proteins), or whether it is based on more general redundancy and distributed robustness at the network level. The latter explanation implies that mutations in many regulatory factors should exhibit loss of canalisation. Here, we present a quantitative characterisation of segmentation gene expression patterns in mutants of the terminal gap gene tailless (tll) in Drosophila melanogaster. Our analysis provides new insights into the dynamic mechanisms underlying gap gene regulation, and reveals significantly increased variability of gene expression in the mutant compared to the wild-type background. We show that both position and timing of posterior segmentation gene expression domains vary strongly from embryo-to-embryo in tll mutants. This variability must be caused by a vulnerability in the regulatory system which is hidden or buffered in the wild-type, but becomes uncovered by the deletion of tll. Our analysis provides evidence that loss of canalisation in mutants could be more widespread than previously thought.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Animais , Blastoderma/citologia , Blastoderma/metabolismo , Padronização Corporal/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Redes Reguladoras de Genes/genética , Genes de Insetos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
PLoS One ; 7(4): e32867, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505998

RESUMO

BACKGROUND: Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade. CONCLUSIONS/SIGNIFICANCE: The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel family of eukaryotic nitrile hydratases presented in this paper represents a promising candidate for research into their molecular biology and possible biotechnological applications.


Assuntos
Eucariotos/enzimologia , Eucariotos/genética , Hidroliases/genética , Código de Barras de DNA Taxonômico/métodos , Evolução Molecular , Transferência Genética Horizontal , Íntrons , Filogenia , Estrutura Terciária de Proteína
20.
Dev Biol ; 363(1): 290-307, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22138381

RESUMO

The geophilomorph centipede Strigamia maritima is an emerging model for studies of development and evolution among the myriapods. A draft genome sequence has recently been completed, making it also an important reference for comparative genomics, and for studies of myriapod physiology more generally. Here we present the first detailed description of myriapod development using modern techniques. We describe a timeline for embryonic development, with a detailed staging system based on photographs of live eggs and fixed embryos. We show that the early, cleavage and nuclear migration, stages of development are remarkably prolonged, accounting for nearly half of the total developmental period (approx 22 of 48 days at 13 °C). Towards the end of this period, cleavage cells migrate to the egg periphery to generate a uniform blastoderm. Asymmetry quickly becomes apparent as cells in the anterior half of the egg condense ventrally to form the presumptive head. Five anterior segments, the mandibular to the first leg-bearing segment (1st LBS) become clearly visible through the chorion almost simultaneously. Then, after a short pause, the next 35 leg-bearing segments appear at a uniform rate of 1 segment every 3.2 h (at 13 °C). Segment addition then slows to a halt with 40-45 LBS, shortly before the dramatic movements of germ band flexure, when the left and right halves of the embryo separate and the embryo folds deeply into the yolk. After flexure, segment morphogenesis and organogenesis proceed for a further 10 days, before the egg hatches. The last few leg-bearing segments are added during this period, much more slowly, at a rate of 1-2 segments/day. The last leg-bearing segment is fully defined only after apolysis of the embryonic cuticle, so that at hatching the embryo displays the final adult number of leg-bearing segments (typically 47-49 in our population).


Assuntos
Artrópodes/citologia , Artrópodes/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Animais , Blastoderma/citologia , Blastoderma/embriologia , Padronização Corporal , Divisão Celular , Movimento Celular , Feminino , Gástrula/citologia , Gástrula/embriologia , Masculino , Microscopia de Vídeo , Modelos Biológicos , Fatores de Tempo , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...