Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 87: 106764, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32736191

RESUMO

Phosphoinositide 3-kinases generate lipid-based second messengers that control an array of intracellular signaling pathways. In particular, phosphoinositide 3-kinases delta (PI3Kδ) is expressed primarily in hematopoietic cells and plays an important role in B-cell development and function. B cells play a critical role in autoimmune diseases by producing autoantibodies. Studies have therefore increasingly focused on PI3Kδ as a therapeutic target for the treatment of inflammatory and autoimmune diseases. One such autoimmune disease is systemic lupus erythematosus (SLE). SLE is a chronic systemic autoimmune disease with repeated recurrence and remission, and autoantibodies play an important role in its pathogenesis. Here, we examined the pharmacological profile of the novel PI3Kδ selective inhibitor AS2819899 and investigated its therapeutic potential against SLE in a NZB/W F1 mouse lupus-like nephritis model, a widely-used SLE mouse model. AS2819899 prevented B and T cell activation in vitro, and inhibited antibody production in a T-cell independent de novo antibody production mouse model. In the spontaneous NZB/W F1 mouse model, AS2819899 treatment significantly reduced anti-dsDNA antibody titers and improved kidney dysfunction. Further, AS2819899 inhibited the memory recall reaction in a T-cell dependent antibody production mouse model, suggesting that AS2819899 can potentially maintain remission of SLE. Moreover, we identified a pharmacodynamics marker for AS2819899 that may be useful in clinical studies. These results indicate that AS2819899 may be an attractive therapeutic candidate for SLE, including the maintenance of remission.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Nefrite Lúpica/tratamento farmacológico , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina M/imunologia , Nefrite Lúpica/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
2.
Sci Immunol ; 4(40)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653719

RESUMO

A promising way to restrain hazardous immune responses, such as autoimmune disease and allergy, is to convert disease-mediating T cells into immunosuppressive regulatory T (Treg) cells. Here, we show that chemical inhibition of the cyclin-dependent kinase 8 (CDK8) and CDK19, or knockdown/knockout of the CDK8 or CDK19 gene, is able to induce Foxp3, a key transcription factor controlling Treg cell function, in antigen-stimulated effector/memory as well as naïve CD4+ and CD8+ T cells. The induction was associated with STAT5 activation, independent of TGF-ß action, and not affected by inflammatory cytokines. Furthermore, in vivo administration of a newly developed CDK8/19 inhibitor along with antigen immunization generated functionally stable antigen-specific Foxp3+ Treg cells, which effectively suppressed skin contact hypersensitivity and autoimmune disease in animal models. The results indicate that CDK8/19 is physiologically repressing Foxp3 expression in activated conventional T cells and that its pharmacological inhibition enables conversion of antigen-specific effector/memory T cells into Foxp3+ Treg cells for the treatment of various immunological diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/imunologia , Células Cultivadas , Quinase 8 Dependente de Ciclina/deficiência , Quinase 8 Dependente de Ciclina/imunologia , Quinases Ciclina-Dependentes/deficiência , Quinases Ciclina-Dependentes/imunologia , Fatores de Transcrição Forkhead/imunologia , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos
3.
Eur J Pharmacol ; 826: 179-186, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518396

RESUMO

B cell-mediated antibodies play a critical role in protecting the body from infections; however, excessive antibody production is involved in the pathogenesis of autoimmune diseases and transplanted organ rejection. Regulation of antibody production is therefore crucial for overcoming these complications. Phosphatidylinositol-3-kinase p110δ (PI3Kδ), a member of the family of PI3K lipid kinases, is a key mediator of B cell activation and proliferation, with a small molecule PI3Kδ inhibitor having been approved for the treatment of B cell lymphoma. However, the effect of PI3Kδ inhibitors on B cell-mediated antibody production has not been clearly elucidated. In this study, we investigated the effect of the selective PI3Kδ inhibitor, AS2541019, on B cell immunity and antibody production. Our results show that AS2541019 effectively prevented B cell activation and proliferation in vitro, and that oral administration of AS2541019 resulted in significant inhibition of both T-dependent and T-independent de novo antibody production in peripheral blood. Further, in a hamster to rat concordant xenotransplant model, AS2541019 significantly prolonged graft survival time by inhibiting xenoreactive antibody production. Therefore, our study demonstrates that the selective PI3Kδ inhibitor AS2541019 inhibits antibody production through potent inhibitory effects on B cell activation, and can protect against organ dysfunction.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Rejeição de Enxerto/prevenção & controle , Ativação Linfocitária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetinae , Feminino , Rejeição de Enxerto/imunologia , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/imunologia , Humanos , Leucócitos Mononucleares , Masculino , Mesocricetus , Modelos Animais , Transplante de Órgãos/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Transplante Heterólogo/efeitos adversos
4.
Transplantation ; 99(8): 1598-605, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25769064

RESUMO

BACKGROUND: Antibody-mediated rejection is caused in part by increasing circulation/production of donor-specific antibody (DSA). Activation-induced cytidine deaminase (AID) is a key regulator of class switch recombination and somatic hypermutation of immunoglobulin in B cells, yet its role in antibody-mediated transplant rejection remains unclear. We show here that AID deficiency in mice enables suppression of allograft vasculopathy (AV) after aorta transplantation, a DSA-mediated process. METHODS: Splenocytes from C57BL/6 J (B6) AID(−/−) mice were used for determining in vitro proliferation responses, alloreactivity, cell surface marker expression, and antibody production. BALB/c mouse aortas were transplanted into B6 AID(−/−) mice with or without FK506 treatment. Blood and aorta grafts were harvested on day 30 after transplantation and were subjected to DSA, histological, and immunohistological analyses. RESULTS: The AID(−/−) splenocytes were comparable to wild type splenocytes in proliferation responses, alloreactivity, and expression of cell surface markers in vitro. However, they completely failed to produce immunoglobulin G, although they were not impaired in immunoglobulin M production relative to controls. Furthermore, BALB/c aorta grafts from B6 AID(−/−) recipient mice on day 30 after transplantation showed reduced signs of AV compared to the grafts from B6 wild type recipient mice which had severe vascular intimal hyperplasia, interstitial fibrosis, and inflammation. Treatment with FK506 produced a synergistic effect in the grafts from AID(−/−) recipients with further reduction of intimal hyperplasia and fibrosis scores. CONCLUSIONS: The AID deficiency inhibits DSA-mediated AV after aorta transplantation in mice. We propose that AID could be a novel molecular target for controlling antibody-mediated rejection in organ transplantation.


Assuntos
Aorta/transplante , Linfócitos B/enzimologia , Aloenxertos Compostos/transplante , Citidina Desaminase/deficiência , Rejeição de Enxerto/prevenção & controle , Imunoglobulina G/sangue , Isoanticorpos/sangue , Baço/enzimologia , Animais , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proliferação de Células , Células Cultivadas , Aloenxertos Compostos/imunologia , Aloenxertos Compostos/patologia , Citidina Desaminase/genética , Fibrose , Rejeição de Enxerto/enzimologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Hiperplasia , Imunoglobulina G/imunologia , Imunossupressores/farmacologia , Isoanticorpos/imunologia , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neointima , Transdução de Sinais , Baço/imunologia , Fatores de Tempo
5.
Mamm Genome ; 19(1): 15-25, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18160996

RESUMO

When the homozygous active form of porcine TGF-beta1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance. To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the "transgenic mice" for quantitative trait loci (QTL) analysis. Genome-wide scans of F(2)-D Tgf/Tgf (D2 x NOD) and F(2)-C Tgf/Tgf (C3H x NOD), homozygous for the TGF-beta1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F(2)-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F(2)-C Tgf/Tgf. Tdn1 (Chr 13, LOD = 4.39), and Tcn3 (Chr 2, LOD = 4.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LOD = 4.38) and Tcn4 (Chr 14, LOD = 3.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LOD = 4.41) and Tcn5 (Chr 18, LOD = 4.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LOD = 4.90). Identification of six QTLs for diabetes-related traits in F(2)-D Tgf/Tgf and F(2)-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type 2 diabetes.


Assuntos
Cruzamentos Genéticos , Diabetes Mellitus/genética , Homozigoto , Locos de Características Quantitativas/genética , Fator de Crescimento Transformador beta/genética , Transgenes/genética , Animais , Glicemia , Peso Corporal , Cromossomos de Mamíferos , Feminino , Privação de Alimentos , Genoma , Insulina/sangue , Escore Lod , Masculino , Camundongos , Característica Quantitativa Herdável , Caracteres Sexuais , Suínos
6.
J Biol Chem ; 277(15): 13053-8, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11825889

RESUMO

ERK is activated by soluble growth factors in adherent cells. However, activation of ERK is barely detectable and not sufficient for cell proliferation in non-adherent cells. Here, we show that exogenous expression of vinexin beta, a novel focal adhesion protein, allows anchorage-independent ERK2 activation stimulated by epidermal growth factor. In contrast, expression of vinexin beta had no effect on ERK2 activation in adherent cells, suggesting that vinexin beta regulates the anchorage dependence of ERK2 activation. Analyses using deletion mutants demonstrated that a linker region between the second and third SH3 domains of vinexin beta, but not the SH3 domains, is required for this function of vinexin beta. To evaluate the pathway regulating the anchorage dependence of ERK2 activation, we used a dominant-negative mutant of p21-activated kinase (PAK) and a specific inhibitor (H89) of cAMP-dependent protein kinase (PKA) because PAK and PKA are known to regulate the anchorage dependence of ERK2 activation. The dominant-negative mutant of PAK suppressed the anchorage-independent ERK2 activation induced by expression of vinexin beta. The dominant-negative mutant of vinexin beta inhibited the anchorage-independent ERK2 activation induced by the PKA inhibitor. Together, these observations indicate that vinexin beta plays a key role in regulating the anchorage dependence of ERK2 activation through PKA-PAK signaling.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Musculares/fisiologia , Células 3T3 , Animais , Adesão Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...