Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262153

RESUMO

BackgroundAfter moving instruction online for more than a year, many colleges and universities are preparing to reopen and offering fully in-person classes for the Fall 2021 semester. In this paper, we study the impact of weekly testing protocols on college campuses. MethodsAn extended susceptible-infectious-removed (SIR) compartmental model was used to simulate COVID-19 spread on a college campus setting. Seven scenarios were evaluated which considered polymerase chain reaction (PCR) and rapid antigen testing kits available at various levels of supply. The infection attack rate (IAR), the number of infections, and the number of tests utilized by the end of the simulation semester are reported and compared. ResultsWeekly testing significantly reduces the number of infections compared to when testing is not available. The use of PCR tests results in the lowest infection attack rate and the total number of cases; however, using rapid antigen tests with higher coverage is more effective than using PCR tests with lower coverage. ConclusionsThe implementation of COVID-19 testing protocols should be considered and evaluated as using testing allows for identification and isolation of cases which reduces the spread of COVID-19 on college campuses. Even if testing capacity is limited, its partial implementation can be beneficial.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250721

RESUMO

ObjectiveTo assess the value of using SARS-CoV-2 specific antibody testing to prioritize the vaccination of susceptible individuals as part of a COVID-19 vaccine distribution plan when vaccine supply is limited. MethodsA compartmental model was used to simulate COVID-19 spread when considering diagnosis, isolation, and vaccination of a cohort of 1 million individuals. The scenarios modeled represented 4 pandemic severity scenarios and various times when the vaccine becomes available during the pandemic. Eligible individuals have a probability p of receiving antibody testing prior to vaccination (p = 0, 0.25, 0.5, 0.75, and 1). The value of serology testing was evaluated by comparing the infection attack rate, peak infections, peak day, and deaths. ResultsThe use of antibody testing to prioritize the allocation of limited vaccines reduces infection attack rates and deaths. The size of the reduction depends on when the vaccine becomes available relative to the infection peak day. The largest reduction in cases and deaths occurs when the vaccine is deployed before and close to the infection peak day. The reduction in the number of cases and deaths diminishes as vaccine deployment is delayed and moves closer to the peak day. ConclusionsAntibody testing as part of the vaccination plan is an effective method to maximize the benefit of a COVID-19 vaccine. Decision-makers need to consider relative timing between the infection peak day and when the vaccine becomes available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...