Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360724

RESUMO

The formation of coffee-ring deposits upon evaporation of sessile droplets containing mixtures of poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants were studied. This process is driven by the Marangoni stresses resulting from the formation of surface-active polyelectrolyte-surfactant complexes in solution and the salt arising from the release of counterions. The morphologies of the deposits appear to be dependent on the surfactant concentration, independent of their chemical nature, and consist of a peripheral coffee ring composed of PDADMAC and PDADMAC-surfactant complexes, and a secondary region of dendrite-like structures of pure NaCl at the interior of the residue formed at the end of the evaporation. This is compatible with a hydrodynamic flow associated with the Marangoni stress from the apex of the drop to the three-phase contact line for those cases in which the concentration of the complexes dominates the surface tension, whereas it is reversed when most of the PDADMAC and the complexes have been deposited at the rim and the bulk contains mainly salt.


Assuntos
Polieletrólitos/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Silício/química , Tensoativos/química , Tensão Superficial
2.
Phys Chem Chem Phys ; 22(40): 23360-23373, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047113

RESUMO

The adsorption of mixtures formed by chitosan and sodium lauryl ether sulfate (SLES) at the water/vapor interface has been studied on the basis of their impact on the equilibrium surface tension of the interface, and the response of such an interface to mechanical deformations. The analysis of the surfactant binding to the chitosan chains evidenced that the chitosan-SLES solutions were mixtures of polyelectrolyte-surfactant complexes and a non-negligible amount of free surfactant molecules. The interfacial properties showed two well-differentiated regions for interfacial adsorption as a function of the SLES concentration: (i) at a low surfactant concentration, co-adsorption of chitosan and SLES occurs, and (ii) at high concentrations, the surface is mostly occupied by SLES molecules. This behavior may be interpreted in terms of a complex equilibration mechanism of the interfacial layers, where different coupled dynamic processes may be involved. Furthermore, the use of the time-concentration superposition principle has confirmed the different dynamic behaviors of the chitosan-SLES adsorption as a function of the SLES concentration. This work sheds light on some of the most fundamental bases governing the physico-chemical behavior of mixtures formed by a biopolymer and a surfactant, where their complex behavior is governed by an intricate balance of bulk and interfacial interactions.

3.
Molecules ; 24(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547491

RESUMO

The bulk and interfacial properties of solutions formed by a polycation (i.e., poly(diallyl-dimethylammonium chloride), PDADMAC) and two different zwitterionic surfactants (i.e., coco-betaine (CB) and cocoamidopropyl-betaine (CAPB)) have been studied. The bulk aggregation of the polyelectrolyte and the two surfactants was analyzed by turbidity and electrophoretic mobility measurements, and the adsorption of the solutions at the fluid interface was studied by surface tension and interfacial dilational rheology measurements. Evidence of polymer-surfactant complex formation in bulk was only found when the number of surfactant molecules was closer to the number of charged monomers in solutions, which suggests that the electrostatic repulsion associated with the presence of a positively charged group in the surfactant hinders the association between PDADMAC and the zwitterionic surfactant for concentrations in which there are no micelles in solution. This lack of interaction in bulk is reflected in the absence of an influence of the polyelectrolyte in the interfacial properties of the mixtures, with the behavior being controlled by the presence of surfactant. This work has evidenced the significant importance of the different interactions involved in the system for controlling the interaction and complexation mechanisms of in polyelectrolyte-surfactant mixtures.


Assuntos
Polieletrólitos/química , Polímeros/química , Tensoativos/química , Adsorção , Vapor , Propriedades de Superfície
4.
Langmuir ; 34(25): 7455-7464, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29856927

RESUMO

The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC)-sodium lauryl ether sulfate (SLES) mixtures at the water/vapor interface has been studied by different surface tension techniques and dilational viscoelasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte-surfactant complexes in the bulk affects the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC-SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work aids our understanding of the most fundamental basis of the physicochemical behavior of concentrated polyelectrolyte-surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

5.
Phys Chem Chem Phys ; 20(3): 1395-1407, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29297520

RESUMO

Polyelectrolyte-surfactant mixtures and their interactions with fluid interfaces are an important research field due to their use in technological applications. Most of the existing knowledge on these systems is based on models in which the polyelectrolyte concentration is around 50 times lower than that used in commercial formulations. The present work marks a step to close the gap on the understanding of their behavior under more practically-relevant conditions. The adsorption of concentrated mixtures of poly(diallyldimethyl-ammonium) chloride and sodium N-lauroyl-N-methyltaurate at the water/vapor interface with a crude mixing protocol has been studied by different surface tension techniques, Brewster angle microscopy, neutron reflectometry, and several bulk characterization techniques. Kinetically-trapped aggregates formed during mixing influence the interfacial morphology of mixtures produced in the equilibrium one-phase region, yet fluctuations in the surface tension isotherm result depending on the tensiometric technique applied. At low bulk surfactant concentrations, the free surfactant concentration is very low, and the interfacial composition matches the trend of the bulk complexes, which is a behavior that has not been observed in studies on more dilute mixtures. Nevertheless, a transition to synergistic co-adsorption of complexes and free surfactant is observed at the higher bulk surfactant concentrations studied. This transition appears to be a special feature of these more concentrated mixtures, which deserves attention in future studies of systems with additional components.

6.
Adv Colloid Interface Sci ; 233: 38-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26608684

RESUMO

The interest of polymer-surfactant systems has undergone a spectacular development in the last thirty years due to their complex behavior and their importance in different industrial sectors. The importance can be mainly associated with the rich phase behavior of these mixtures that confers a wide range of physico-chemical properties to the complexes formed by polymers and surfactants, both in bulk and at the interfaces. This latter aspect is especially relevant because of the use of their mixture for the stabilization of dispersed systems such as foams and emulsions, with an increasing interest in several fields such as cosmetic, food science or fabrication of controlled drug delivery structures. This review presents a comprehensive analysis of different aspects related to the phase behavior of these mixtures and their intriguing behavior after adsorption at the liquid/air interface. A discussion of some physical properties of the bulk is also included. The discussion clearly points out that much more work is needed for obtaining the necessary insights for designing polymer-surfactant mixtures for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...