Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurosci ; 24(1): 32-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28827919

RESUMO

BACKGROUND: Recent evidences suggest that cerebellar degeneration may be associated with the development of Alzheimer's disease (AD). However, previous reports were mainly observational, lacking substantial characterization of cellular and molecular cerebellar features during AD progression. PURPOSE: This study is aimed at characterizing the cerebellum in rat models of AD and assessing the corresponding neuroprotective mechanisms of Garcinia biflavonoid complex (GBc). METHODS: Male Wistar rats were grouped and treated alone or in combination with PBS (ad libitum)/day, corn oil (CO; 2 mL/kgBw/day), GBc (200 mg/kgBw/day), sodium azide (NaN3) (15 mg/kgBw/day) and aluminium chloride (AlCl3) (100 mg/kgBw/day). Groups A and B received PBS and CO, respectively; C received GBc; D received NaN3; E received AlCl3; F received NaN3 then GBc subsequently; G received AlCl3 then GBc subsequently; H received NaN3 and GBc simultaneously while I received AlCl3 and GBc simultaneously. Following treatments, cerebellar cortices were processed for histology, immunohistochemistry and colorimetric assays. RESULTS: Our data revealed that cryptic granule neurons and pyknotic Purkinje cell bodies (characterized by short dendritic/axonal processes) correspond to indistinctly demarcated cerebellar layers in rats treated with AlCl3 and NaN3. These correlates, with observed hypertrophic astrogliosis, increased the neurofilament deposition, depleted the antioxidant system-shown by expressed superoxide dismutase and glutathione peroxidase, and cerebellar glucose bioenergetics dysfunction-exhibited in assayed lactate dehydrogenase and glucose-6-phosphate dehydrogenase. We further showed that GBc reverses cerebellar degeneration through modulation of neurochemical signaling pathways and stressor molecules that underlie AD pathogenesis. CONCLUSION: Cellular, molecular and metabolic neurodegeneration within the cerebellum is associated with AlCl3 and NaN3-induced AD while GBc significantly inhibits corresponding neurotoxicity and is more efficacious when pre-administered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...