Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Theriogenology ; 197: 1-9, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462330

RESUMO

Cytoskeletal proteins not only define the shape of cells, but also have critical roles in their proliferation, migration and motility, as well as in the establishment and maintenance of tissue organization and integrity. Furthermore, these proteins influence the physiological processes of the male reproductive system and are found in the structure of some cells. This study aimed to determine differences between the pre- and post-pubertal periods for the localization and distribution of actin, desmin, vimentin and cytokeratin-18 in the testes, epididymides and ductus deferentes of Persian and Turkish Angora and Van cats, using immunohistochemistry. The study material was grouped as belonging to the pre-pubertal and post-pubertal periods. The tissue samples of both groups were subjected to routine histological processing and embedded in paraffin. Serial sections cut from the paraffin-embedded tissue blocks were immunohistochemically stained with the indirect streptavidin-biotin complex method. Immunohistochemical findings demonstrated that there was no difference between the pre- and post-pubertal periods for the staining intensity and distribution of the proteins actin, vimentin, desmin and cytokeratin-18 in Persian and Turkish Angora and Van cats. On the other hand, differences were detected between the pre- and post-pubertal periods for the cellular expression and localization of these proteins in the testes, epididymides and ductus deferentes. Thus, the study results suggest that, based on the expression of actin, desmin, vimentin and cytokeratin-18 in the testes, epididymides and ductus deferentes during both periods, these molecular factors could have a contributory role in the development of the male reproductive system and the regulation of its physiological processes.


Assuntos
Proteínas do Citoesqueleto , Testículo , Masculino , Animais , Testículo/metabolismo , Vimentina/metabolismo , Queratina-18/metabolismo , Actinas/metabolismo , Desmina/metabolismo
2.
Anim Reprod Sci ; 243: 107026, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752032

RESUMO

The study aimed to investigate the expression and cellular localization of two critical non-nuclear progesterone receptors, including membrane-associated-progesterone-receptor-component-1 (PGRMC1) and progestin and adipoQ receptor family member 7 (PAQR7) throughout the estrous cycle and early pregnancy in ovine corpus luteum (CL). Ewes were randomly grouped into cyclic (C, n = 4 per group) or pregnant (P, n = 4 per group) groups. Following slaughtering, the CL was obtained from both cyclic and pregnant ewes on days 12 (C12 and P12), 16 (C16 and P16), and 22 (C22 and P22). Western blotting and RT-qPCR were utilized to assess the expression levels of PGRMC1 and PAQR7, whereas immunohistochemistry was performed to determine the localization of PGRMC1 and PAQR7 in CL. Data were evaluated by one-way ANOVA, and the P < 0.05 was considered a significant difference. PGRMC1 was shown to be expressed in both small and large luteal cells and endothelial cells in CL, while PAQR7 expression was only found in small and large luteal cells. Compared to cycle days, pregnancy increased the expression of PGRMC1. PAQR7 did not differ during early pregnancy but reduced during the functional luteolysis stage (C16). mRNA and protein expression patterns for PGRMC1 and PAQR7 were similar on the studied days. This is the first study that demonstrates the expression and cellular localization of PGRMC1 and PAQR7 in ovine CL. We suggest that these receptors could execute a significant role in the ovine CL life span in both cyclic changes and the establishment of pregnancy.


Assuntos
Progesterona , Receptores de Progesterona , Animais , Corpo Lúteo/fisiologia , Células Endoteliais/metabolismo , Ciclo Estral/fisiologia , Feminino , Gravidez , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Ovinos , Carneiro Doméstico/metabolismo
3.
Int. j. morphol ; 40(3): 619-626, jun. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1385649

RESUMO

SUMMARY: Recent studies have shown that homeobox proteins play an important role in the formation and development of tissues and organs in the embryonic period. In our study, the distribution of Dlx-5 and TLX proteins, which are members of the homeobox family, in the testis, epididymis and ductus deferens ducts of some cat breeds were investigated. For this purpose, in the study, 18 testes younger than six months (immature) and older than one year (mature) were examined under a light microscope using an immunohistochemical method (indirect streptavidin-biotin complex). While it was determined that Dlx-5 and TLX1 proteins were expressed at varying levels in cells in immature and mature cat testicles, epithelial cells of ductus epididymis and ductus deferens, and smooth muscle cells of ductus deferens, no differences were observed between cat breeds. Dlx-5 immunoreactivity was more intense in the testes, epididymis and deferens ducts of immature and mature compared to TLX1. These results suggested that both proteins play important roles in the development of male feline genital organs and in the secretion and differentiation of cells, and also further observation of Dlx-5 expression suggested that this protein may be more effective than TLX1 in testicular development and physiological processes.


RESUMEN: Estudios recientes han demostrado que las proteínas homeobox juegan un papel importante en la formación y desarrollo de tejidos y órganos en el período embrionario. En nuestro estudio, se investigó la distribución de las proteínas Dlx-5 y TLX, que son miembros de la familia homeobox, en los testículos, en el epidídimo y en los conductos deferentes de algunas razas de gatos. En el estudio fueron examinados, 18 testículos de animales menores de seis meses (inmaduros) y mayores de un año (maduros) bajo un microscopio óptico utilizando un método inmunohistoquímico (complejo indirecto de estreptavidina-biotina). Si bien se determinó que las proteínas Dlx-5 y TLX1 se expresaron en niveles variables en las células de los testículos de gatos inmaduros y maduros, las células epiteliales del epidídimo y del conducto deferente y las células del músculo liso del conducto deferente, no se observaron diferencias entre las razas de gatos. La inmunorreactividad de Dlx-5 fue más intensa en los testículos, epidídimo y conductos deferentes de gatos inmaduros y maduros en comparación con TLX1. Estos resultados sugieren que ambas proteínas tienen un rol importante en el desarrollo de los órganos genitales felinos masculinos y en la secreción y diferenciación de células, y también la observación de la expresión de Dlx-5 sugirió que esta proteína puede ser más efectiva que TLX1 en el desarrollo testicular y en los procesos fisiológicos.


Assuntos
Animais , Masculino , Gatos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica
4.
Anat Histol Embryol ; 50(4): 726-735, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34131940

RESUMO

Homeobox (HOX) proteins are known for their critical role in body shape formation and tissue differentiation of developing vertebrate embryos. Recent research has shown that HOX proteins have many physiological roles such as cell proliferation, cell cycle, apoptosis and cell differentiation in adults, as well as the development of the vertebrate nerve and reproductive system. This study was conducted to determine the possible physiological functions and expression intensities of HOXA10, HOXA11, HOXB6 and HOXC6 proteins in the male reproductive system (testes, epididymis and deferens ducts), which are important for the continuity of some specific cat breeds in different age ranges. In the study, a total of 18 testicular tissues were used, divided into two groups: less than 6 months (immature) and more than 1 year (mature). Tissue samples were then subjected to immunohistochemical staining with protein-specific antibodies examined in the study. In the findings obtained in the research; it was observed that HOXA10, HOXA11, HOXB6 and HOXC6 produced different intensities of immunolocalization in the epididymis and ductus deferens layers in the immature and mature testicular cells. In addition, it was found that HOXA10 immunoreaction was also seen in some vascular endothelial cells. As a result, it was concluded that the HOX proteins could contribute to the physiological functions of testes, epididymis and ductus deferens and affect male fertility.


Assuntos
Proteínas de Homeodomínio , Testículo , Animais , Gatos , Células Endoteliais , Epididimo , Proteínas de Homeodomínio/genética , Masculino , Ducto Deferente
5.
Microsc Res Tech ; 81(3): 315-331, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29318745

RESUMO

More recent studies indicate that immune cells which secrete their secretory products or cytokines play an important role in reproductive system. In our study, immune cell populations (CD8+ T lymphocytes, CD68+ macrophages, plasma cells, siderophages, eosinophils) and expression of major histocompatibility complex (MHC) class I and class II were examined in female reproductive tract during follicular (n = 13) and luteal phase (n = 10). Plasma cells and eosinophil granulocytes are present in few numbers in luminal epithelium, but abundant in longitudinal muscle layer of uterus, whereas siderophages are the dominant cell type in stroma. Moreover, MHC-I and -II+ cells are expressed by individual cells in organ layers, while CD8+ T cells and CD68+ macrophages are dominant in epithelium and muscle layer, respectively. In conclusion, we did not found significant changes in immune cells according to follicular and luteal phases, but localization and numbers in each organ have changed according to both organ and layers. These results indicate that these factors may play a crucial role not only to generate an immune response but also to have a role in regulation of physiological functions in female reproductive organs.


Assuntos
Fase Folicular/imunologia , Fase Luteal/imunologia , Útero/citologia , Animais , Bovinos , Células Epiteliais/citologia , Epitélio/imunologia , Feminino , Macrófagos/citologia , Reprodução , Linfócitos T/citologia , Útero/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...