Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 637-652, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367581

RESUMO

Liquid marbles are droplets coated by hydrophobic particles. At low Weber numbers (We), when impacting a hydrophilic surface, the marble may bounce on the substrate repeatedly without any rupturing until the quiescence condition is achieved. The marble bouncing has gained far less attention, although its rich underlying physics is due to the interaction between liquid core, hydrophobic grain, and surrounding air. Accordingly, this research experimentally scrutinizes the marble impact and subsequent bouncing on a hydrophilic surface for the first time. Additionally, the conversion of kinetic, gravitational potential, inertial, and surface energies occurring regularly during the impact is exhaustively surveyed. Moreover, the effect of Weber and gravitational Bond numbers (Bo) on the bouncing time, maximum spreading time, maximum spreading ratio, maximum elongation ratio, and maximum restitution are investigated, which characterize the marble impact and bouncing dynamics. This study is one of the limited investigations exploring the effects of the gravitational Bond number on the results. Dimensionless correlations are proposed for the mentioned parameters based on the experimental data. Furthermore, utilizing the simplifying theoretical presumptions, correlations are suggested based on the scale analysis for the spreading time and maximum spreading ratio. The results imply that the mentioned parameters behave differently at low and moderate Weber numbers, though the distinction is more pronounced in the case of the bouncing time, maximum spreading time and maximum spreading ratio. Although increasing with the Weber number when WeWecr. In addition, the maximum elongation ratio linearly grows with the Weber number.

2.
J Int Oral Health ; 7(8): 9-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26464532

RESUMO

BACKGROUND: Different studies have shown the uncertain effects of thermal cycling (TC) and mechanical load cycling (MC) on the dentin microtensile bond strength (µTBS) of composites. This study designed to investigate the effects of TC and MC on the dentin µTBS of single bond-2. MATERIALS AND METHODS: Flat dentinal surface was prepared on 48 sound extracted human third molar teeth, and were bonded by single bond-2 adhesive and Z250 resin composite. The teeth were randomly divided into eight equal groups, according to the thermal/mechanical protocol. TC and MC were proceeded at 5-55°C and 90 N with 0.5 Hz. Then restorations were sectioned to shape the hour-glass form and subjected to µTBS testing at a speed of 0.5 mm/min. To evaluate the bonding failure, the specimens were observed under the scanning electron microscope. The results were statistically analyzed with analysis of variance, t-test, Tukey HSD and post-hoc by using SPSS software version 17 at a significant level of 0.05. RESULTS: µTBS of all groups were significantly lower than the control group (P < 0.001). Adhesive failure was predominant in all groups and increased with TC and MC. CONCLUSIONS: TC and MC had an adverse effect on µTBS of the tested adhesive resin to dentin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...