Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(20): 8067, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35574669

RESUMO

Correction for 'Solvent-driven azide-induced mononuclear discrete versus one-dimensional polymeric aromatic Möbius cadmium(II) complexes of an N6 tetradentate helical ligand' by Farhad Akbari Afkhami et al., Dalton Trans., 2017, 46, 14888-14896, https://doi.org/10.1039/C7DT02952G.

2.
ACS Appl Mater Interfaces ; 12(34): 38285-38298, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846472

RESUMO

In this work, nanorods with high antibacterial properties were synthesized with silver acetate as the metal source and 2-aminoterephthalic acid as the organic linker and were then embedded into thin-film composite (TFC) membranes to amend their performance as well as to alleviate biofouling. Silver metal-organic framework (Ag-MOF) nanorods with a length smaller than 40 nm were incorporated within the polyamide thin selective layer of the membranes during interfacial polymerization. The interaction of the synthesized nanorods with the polyamide was favored because of the presence of amine-containing functional groups on the nanorod's surface. The results of X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy characterizations proved the presence of Ag-MOF nanorods in the selective layer of thin-film nanocomposite (TFN) membranes. TFN membranes demonstrated improved water permeance, salt selectivity, and superior antibacterial properties. Specifically, the increased hydrophilicity and antibacterial potential of the TFN membranes led to a synergetic effect toward biofouling mitigation. The number of live bacteria attached to the surface of the neat TFC membrane decreased by more than 92% when a low amount of Ag-MOF nanorods (0.2 wt %) was applied. Following contact of the TFN membrane surface with Escherichia coli and Staphylococcus aureus, full inactivation, and degradation of bacteria cells were observed with microscopy, colony-forming unit tests, and disc inhibition zone analyses. This result translated to a negligible amount of the biofilm formed on the active layer. Indeed, the incorporation of Ag-MOF nanorods decreased the metal-ion release rate and therefore provided prolonged antibacterial performance.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Estruturas Metalorgânicas/química , Nanotubos/química , Prata/química , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Nanotubos/toxicidade , Nylons/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
3.
Dalton Trans ; 46(43): 14888-14896, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043338

RESUMO

We report the synthesis and structural characterization of a heteroleptic mononuclear discrete complex [Cd(N3)2(L)(MeOH)]·MeOH (1·MeOH) and a one-dimensional coordination polymer of the composition [Cd3(N3)6(L)]n (2), fabricated from Cd(NO3)2·4H2O and the helical organic ligand benzilbis((pyridin-2-yl)methylidenehydrazone) (L) in the presence of two equivalents of NaN3. The formation of different structures is driven by the solvent. The former complex is formed in the presence of MeOH, while the latter complex is formed in EtOH. The CdII centre in 1·MeOH is trapped by the two pyridyl-imine units of the tetradentate ligand L, two azide ligands and one oxygen atom of one methanol ligand with the CdN6O coordination polyhedron yielding a square face monocapped trigonal prism. The asymmetric unit of 2 consists of three symmetrically independent atoms of CdII, six azide anions and one L. The polymeric structure of 2 is realized through chains of the Cd(N3)2 units which are decorated with Cd(N3)2L units. The CdII atoms from the backbone of the coordination polymer have a distorted octahedral coordination, while the remaining CdII atom forms a trigonal prism with two basal planes nearly parallel to each other. In both complexes, the 12π electron chelate ring of the CdL fragment is shown to be aromatic by establishing it as a Möbius object. Hirshfeld surface analysis of 1 in 1·MeOH and L in 2 showed that the structures of both species are highly dominated by HX (X = H, C and N) contacts, of which the latter two are highly favoured, as well as some contribution from highly enriched CC contacts is clearly observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...