Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16875, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207446

RESUMO

The excitation-emission fluorescence spectroscopy combined with three-way analysis was applied for discriminating the pure BSA and BSA/Fe3O(OAc)6ClO4 (Fe) using unsupervised classification methods. Herein, the interaction of bovine serum albumin (BSA) and Fe clusters as an artificial enzyme is studied by extracting the intrinsic excitation-emission (EEM) fluorescence of BSA. The conformation of BSA changes with pH, temperature, and Fe concentration. Three-way fluorescence data were recorded for BSA and BSA/Fe during different days. The obtained results showed that the Fe clusters cause changes in the structure of BSA conformation as a function of pH, temperature, and Fe concentration. Also, the denaturation pathway of the BSA molecule is significantly different in the presence of Fe clusters. Both techniques of PARAFAC and PCA were used in the excitation-emission fluorescence matrices (EEM) of solutions at three different pH (5.0, 7.0, and 9.0) and temperatures (15.0, 25.0, and 35.0 °C) values. Also, we reported the results of the change in concentrations of Fe (4.0, 6.0, and 8.0 mg) using these methods. These three amino acids (tyrosine, tryptophan, and phenylalanine) indicate all datasets and their similarities and differences. The spectral differences were more remarkable in different pH values compared to different temperatures. Also, we could distinguish between the groups of protein samples properly in different concentrations of Fe using low-cost EEM spectral images and PARAFAC.


Assuntos
Soroalbumina Bovina , Triptofano , Fenilalanina , Soroalbumina Bovina/química , Espectrometria de Fluorescência/métodos , Tirosina
2.
J Photochem Photobiol B ; 195: 58-66, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31100638

RESUMO

The potential of excitation-emission fluorescence spectroscopy combined with three-way analysis was investigated for discriminating the photosystem II (PSII) (with the water-oxidizing complex) and without the water-oxidizing complex (wPSII) using unsupervised classification methods. The water-oxidizing complex within PSII carry out the reaction of water splitting which is as a vital process on the earth. Therefore, discriminating the presence of the water-oxidizing complex in protein samples is crucial. Low cost and accurate spectroscopic determination of the amount of clusters inside PSII or any other protein containing species are important when investigating the inclusion and exclusion of such clusters into and from species. Fluorescence data of samples were similar, and we showed the potential usefulness of multivariate methods, such as parallel factor analysis (PARAFAC) and principal component analysis (PCA) for recognition of the two types of samples. Both techniques were applied to the excitation-emission fluorescence matrices (EEM) of solutions at two of different pH values (2.0 and 12.0). Three fluorescent components were found for all samples that are related to tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe) amino acids. These three amino acids are representative of all datasets and indicate their similarities and differences. We then found the effectual wavelengths for separation of samples in a specific acidity, including the excitation wavelengths of 220 and 230 nm and the emission wavelengths of 300 and 305 nm. The acidity of the solutions has various influences on the conformation of proteins. In PSII and PSII the without water-oxidizing complex samples conformational changes can change their spectra which was applied for discrimination purpose. This separation was better in pH = 12.0. We also showed the effect of time on small conformational changes within datasets were higher in pH = 2.0. In the end, for indicating the high distribution of spectral data from proteins which is the result of conformational changes, we compared the distribution of measured spectral data with that from a simple organic molecule, fluorescein. Altogether, we could distinguish between the two groups of protein samples properly at pH = 12.0 using low-cost EEM spectral images and PARAFAC.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Água/química , Análise por Conglomerados , Concentração de Íons de Hidrogênio , Análise Multivariada , Análise de Componente Principal , Espectrometria de Fluorescência , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...