Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(13): e2305113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168542

RESUMO

The lack of material characteristic length scale prevents classical continuum theory (CCT) from recognizing size effect. Additionally, the even-order material property tensors associated with CCT only characterize the materials' centrosymmetric behavior and overlook their intrinsic chirality and polarity. Moreover, CCT is not reducible to 2D and 1D space without adding couples and higher-order deformation gradients. Despite several generalized continuum theories proposed over the past century to overcome the limitations of CCT, the broad application of these theories in the field of mechanical metamaterials has encountered significant challenges. These obstacles primarily arise from a limited understanding of the material coefficients associated with these theories, impeding their widespread adoption. Implementing a bottom-up approach based on augmented asymptotic homogenization, a consistent and self-sufficient effective couple-stress theory for materials with microstructures in 3D, 2D, and 1D spaces is presented. Utilizing the developed models, material properties associated with axial-twist, shear-bending, bending-twist, and double curvature bending couplings in mechanical metamaterials are characterized. The accuracy of these homogenized models is investigated by comparing them with the detailed finite element models and experiments performed on 3D-printed samples. The proposed models provide a benchmark for the rational design, classification, and manufacturing of mechanical metamaterials with programmable coupled deformation modes.

2.
ACS Nano ; 18(1): 894-908, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38149799

RESUMO

Elastocaloric materials, capable of achieving reversible thermal changes in response to a uniaxial stress, have attracted considerable attention for applications in advanced thermal management technologies, owing to their environmental friendliness and economic benefits. However, most elastocaloric materials operating on the basis of first/second-order phase transition often exhibit a limited caloric response, field hysteresis, and restricted working temperature ranges. This study resorts to origami engineering for realizing multifunctional metamaterials with exceptional elastocaloric effects at both nano (exemplified by computational simulations for graphene) and meso (demonstrated by experimentation on thermoplastic polyurethane elastomers) scales. The findings uncover that the graphene origami exhibits low-stress-driven reversible and giant elastocaloric effects without a hysteresis loss and with a high elastocaloric strength. These effects are achieved across a wide working temperature range (100-600 K) and are tailorable by fine-tuning the topological parameters and configurational status of the origami metamaterials. We demonstrate the scalability of the origami design strategy for magnifying the elastocaloric effect by the 3D printing of a mesoscale origami-inspired thermoplastic polyurethane metastructure that showcases enhanced elastocaloric performance at room temperature. This study presents the potential for the realization of architected elastocaloric materials through surface functionalization and origami engineering. The findings impart exciting prospects of elastocaloric origami metamaterials as the next generation of multiscale and sustainable thermal management technologies.

3.
Adv Sci (Weinh) ; 10(18): e2207635, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119466

RESUMO

This research is taking the first steps toward applying a 2D dragonfly wing skeleton in the design of an airplane wing using artificial intelligence. The work relates the 2D morphology of the structural network of dragonfly veins to a secondary graph that is topologically dual and geometrically perpendicular to the initial network. This secondary network is referred as the reciprocal diagram proposed by Maxwell that can represent the static equilibrium of forces in the initial graph. Surprisingly, the secondary graph shows a direct relationship between the thickness of the structural members of a dragonfly wing and their in-plane static equilibrium of forces that gives the location of the primary and secondary veins in the network. The initial and the reciprocal graph of the wing are used to train an integrated and comprehensive machine-learning model that can generate similar graphs with both primary and secondary veins for a given boundary geometry. The result shows that the proposed algorithm can generate similar vein networks for an arbitrary boundary geometry with no prior topological information or the primary veins' location. The structural performance of the dragonfly wing in nature also motivated the authors to test this research's real-world application for designing the cellular structures for the core of airplane wings as cantilever porous beams. The boundary geometry of various airplane wings is used as an input for the design proccedure. The internal structure is generated using the training model of the dragonfly veins and their reciprocal graphs. One application of this method is experimentally and numerically examined for designing the cellular core, 3D printed by fused deposition modeling, of the airfoil wing; the results suggest up to 25% improvements in the out-of-plane stiffness. The findings demonstrate that the proposed machine-learning-assisted approach can facilitate the generation of multiscale architectural patterns inspired by nature to form lightweight load-bearable elements with superior structural properties.


Assuntos
Inteligência Artificial , Odonatos , Animais , Asas de Animais/anatomia & histologia , Voo Animal , Odonatos/anatomia & histologia , Aprendizado de Máquina
4.
Adv Sci (Weinh) ; 9(33): e2202883, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253119

RESUMO

Using multistable mechanical metamaterials to develop deployable structures, electrical devices, and mechanical memories raises two unanswered questions. First, can mechanical instability be programmed to design sensors and memory devices? Second, how can mechanical properties be tuned at the post-fabrication stage via external stimuli? Answering these questions requires a thorough understanding of the snapping sequences and variations of the elastic energy in multistable metamaterials. The mechanics of deformation sequences and continuous force/energy-displacement curves are comprehensively unveiled here. A 1D array, that is chain, of bistable cells is studied to explore instability-induced energy release and snapping sequences under one external mechanical stimulus. This method offers an insight into the programmability of multistable chains, which is exploited to fabricate a mechanical sensor/memory with sampling (analog to digital-A/D) and data reconstruction (digital to analog-D/A) functionalities operating based on the correlation between the deformation sequence and the mechanical input. The findings offer a new paradigm for developing programmable high-capacity read-write mechanical memories regardless of thei size scale. Furthermore, exotic mechanical properties can be tuned by harnessing the attained programmability of multistable chains. In this respect, a transversely multistable mechanical metamaterial with tensegrity-like bistable cells is designed to showcase the tunability of chirality.

5.
Nat Commun ; 13(1): 1816, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383167

RESUMO

Origami crease patterns have inspired the design of reconfigurable materials that can transform their shape and properties through folding. Unfortunately, most designs cannot provide load-bearing capacity, and those that can, do so in certain directions but collapse along the direction of deployment, limiting their use as structural materials. Here, we merge notions of kirigami and origami to introduce a rigidly foldable class of cellular metamaterials that can flat-fold and lock into several states that are stiff across multiple directions, including the deployment direction. Our metamaterials rigidly fold with one degree of freedom and can reconfigure into several flat-foldable and spatially-lockable folding paths due to face contact. Locking under compression yields topology and symmetry changes that impart multidirectional stiffness. Additionally, folding paths and mixed-mode configurations can be activated in situ to modulate their properties. Their load-bearing capacity, flat-foldability, and reprogrammability can be harnessed for deployable structures, reconfigurable robots, and low-volume packaging.


Assuntos
Pressão
6.
Chemosphere ; 297: 134181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248592

RESUMO

Catalytic pyrolysis has been widely explored for bio-oil production from lignocellulosic biomass owing to its high feasibility and large-scale production potential. The aim of this review was to summarize recent findings on bio-oil production through catalytic pyrolysis using lignocellulosic biomass as feedstock. Lignocellulosic biomass, structural components and fundamentals of biomass catalytic pyrolysis were explored and summarized. The current status of bio-oil yield and quality from catalytic fast pyrolysis was reviewed and presented in the current review. The potential effects of pyrolysis process parameters, including catalysts, pyrolysis conditions, reactor types and reaction modes on bio-oil production are also presented. Techno-economic analysis of full-scale commercialization of bio-oil production through the catalytic pyrolysis pathway was reviewed. Further, limitations associated with current practices and future prospects of catalytic pyrolysis for production of high-quality bio-oils were summarized. This review summarizes the process of bio-oil production from catalytic pyrolysis and provides a general scientific reference for further studies.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Catálise , Temperatura Alta , Lignina , Óleos de Plantas , Polifenóis
7.
Adv Mater ; 33(42): e2102423, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467581

RESUMO

Developing bistable metamaterials has recently offered a new design paradigm for deployable structures and reusable dampers. While most bistable mechanisms possess inclined/curved struts, a new 3D multistable shellular metamaterial is developed by introducing delicate perforations on the surface of Schwarz's Primitive shellular, integrating the unique properties of shellular materials such as high surface area, stiffness, and energy absorption with the multistability concept. Denoting the fundamental snapping part by motif, certain shellular motifs with elliptical perforations exhibit mechanical bistability. To bring the concept of multistability to a single motif, multistable shellular motifs are developed by introducing multilayer staggered perforations that form hinges and facilitate local instability. Adopting an n-layer staggered perforation (n hinges) design leads to a maximum 2n-1 stable states within one shellular motif during loading and unloading. Three-directional multistable shellulars are attained by extending the perforation design in three orthogonal directions. Harnessing snap-through and snap-back behaviors and self-contact, the introduced multistable perforated shellulars exhibit strong rigidity both in loading and unloading, and enhanced energy dissipation. The introduced design strategy opens up new horizons for creating multidirectional multistable metamaterials with load bearing capabilities for applications in soft robotics, shape-morphing architectures, and reusable and deployable energy absorbers/dampers.

8.
Sci Total Environ ; 741: 140338, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32610233

RESUMO

Machine learning (ML) models are increasingly used to study complex environmental phenomena with high variability in time and space. In this study, the potential of exploiting three categories of ML regression models, including classical regression, shallow learning and deep learning for predicting soil greenhouse gas (GHG) emissions from an agricultural field was explored. Carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, as well as various environmental, agronomic and soil data were measured at the site over a five-year period in Quebec, Canada. The rigorous analysis, which included statistical comparison and cross-validation for the prediction of CO2 and N2O fluxes, confirmed that the LSTM model performed the best among the considered ML models with the highest R coefficient and the lowest root mean squared error (RMSE) values (R = 0.87 and RMSE = 30.3 mg·m-2·hr-1 for CO2 flux prediction and R = 0.86 and RMSE = 0.19 mg·m-2·hr-1 for N2O flux prediction). The predictive performances of LSTM were more accurate than those simulated in a previous study conducted by a biophysical-based Root Zone Water Quality Model (RZWQM2). The classical regression models (namely RF, SVM and LASSO) satisfactorily simulated cyclical and seasonal variations of CO2 fluxes (R = 0.75, 0.71 and 0.68, respectively); however, they failed to reasonably predict the peak values of N2O fluxes (R < 0.25). Shallow ML was found to be less effective in predicting GHG fluxes than other considered ML models (R < 0.7 for CO2 flux and R < 0.3 for estimating N2O fluxes) and was the most sensitive to hyperparameter tuning. Based on this comprehensive comparison study, it was elicited that the LSTM model can be employed successfully in simulating GHG emissions from agricultural soils, providing a new perspective on the application of machine learning modeling for predicting GHG emissions to the environment.

9.
RSC Adv ; 8(55): 31735-31744, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548224

RESUMO

In this paper, the measurement process of advancing and receding contact angles (CA) in experiments is simulated using Surface Evolver (SE). The normalized energy of the droplet is calculated by fixing the three-phase contact line that lies at the boundary between stripes and by changing the droplet volume. The most stable wetting state is determined for each stripe configuration. The slip-jump behavior of the three-phase contact line is observed. Furthermore, a small wet stripe width and large dry stripe width is found to be favorable for achieving large stable equilibrium CA. Moreover, the minimum advancing CA and maximum receding CA can be obtained by assigning a value of zero to the normalized energy barrier. The variation of minimum advancing CA and maximum receding CA with wet and dry stripe widths follows the same trend as the stable equilibrium CA. Combined with the existing model in the literature, the approach introduced in this paper can be used to narrow down the predicted range of dynamic CAs and also to provide guidance for designing anisotropic surfaces.

10.
Adv Mater ; 27(39): 5931-5, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26314680

RESUMO

A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior.


Assuntos
Impressão Tridimensional , Resistência à Tração , Simulação por Computador , Análise de Elementos Finitos , Modelos Teóricos , Dinâmica não Linear , Nylons , Borracha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...