Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16836, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803195

RESUMO

This paper presents a novel analytical solution for journal-bearing viscoelastic lubrication using the perturbation method. The nonlinear Giesekus model was used for the constitutive equations to study the effects of fluid elasticity, shear-thinning viscometric functions, and strain-hardening elongational viscosity of viscoelastic lubrication. The investigation focuses on the impact of characteristic parameters such as mobility factor, eccentricity ratio, and Weissenberg number on the fluid film pressure distribution, load capacity, and shear stress. Although distinguishing between the normal stress differences and extensional viscosity in mixed viscoelastic flows is complicated, we investigated the role and contribution of these two factors. By increasing the elasticity of the fluid, the portion of both mentioned parameters increases consequently. Furthermore, analyses and comparisons show the contributions of the first normal stress and elongational viscosity to the load capacity of the bearing through the stress ratio and flow type parameter for the first time. The research findings indicate that fluid elasticity enhances the load capacity of the bearing compared to a Newtonian lubricant with the same effective viscosity. Moreover, the bearing load capacity is divided into two regions. In the linear region, the mobility factor and Weissenberg numbers have minimal effects leading to a linear increase in the load distribution, and in the exponential region, the load capacity changes are considerable. This research provides valuable insights into the behavior of viscoelastic lubrication in journal-bearing systems.

2.
Electrophoresis ; 44(3-4): 450-461, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448415

RESUMO

To date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.g., frequency and voltage). The governing equations comprising of electric domain and fluid domain have been coupled using finite element method. The developed model was employed to investigate the effect of electrode geometric parameters on electroosmotic slip velocity and its subsequent effect on pressure and flow rate. Numerical simulation indicates that the optimal performance can be achieved using a design with varying step height and displacement, at a given voltage (2.5 V) and frequency (1 kHz). Finally, in order to validate the numerical simulation, the optimal microchip was fabricated using a combination of photolithography, electroplating, and a polydimethylsiloxane microchannel. Our results indicate that our micropump is capable of generating a pressure, velocity, and flow rate of 74.2 Pa, 1.76 mm/s, and 14.8 µl/min, respectively. This result reveals that our proposed geometry outperforms the state-of-the-art micropumps previously reported in the literature by improving the fluid velocity by 32%, with 80% less electrodes per unit length, and whereas the channel length is ∼80% shorter.


Assuntos
Eletricidade , Eletro-Osmose , Eletrodos , Simulação por Computador
3.
Micromachines (Basel) ; 13(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36557519

RESUMO

Recently, there has been increasing attention toward inhaled nanoparticles (NPs) to develop inhalation therapies for diseases associated with the pulmonary system and investigate the toxic effects of hazardous environmental particles on human lung health. Taking advantage of microfluidic technology for cell culture applications, lung-on-a-chip devices with great potential in replicating the lung air-blood barrier (ABB) have opened new research insights in preclinical pathology and therapeutic studies associated with aerosol NPs. However, the air interface in such devices has been largely disregarded, leaving a gap in understanding the NPs' dynamics in lung-on-a-chip devices. Here, we develop a numerical parametric study to provide insights into the dynamic behavior of the airborne NPs in a gas-liquid dual-channel lung-on-a-chip device with a porous membrane separating the channels. We develop a finite element multi-physics model to investigate particle tracing in both air and medium phases to replicate the in vivo conditions. Our model considers the impact of fluid flow and geometrical properties on the distribution, deposition, and translocation of NPs with diameters ranging from 10 nm to 900 nm. Our findings suggest that, compared to the aqueous solution of NPs, the aerosol injection of NPs offers more efficient deposition on the substrate of the air channel and higher translocation to the media channel. Comparative studies against accessible data, as well as an experimental study, verify the accuracy of the present numerical analysis. We propose a strategy to optimize the affecting parameters to control the injection and delivery of aerosol particles into the lung-on-chip device depending on the objectives of biomedical investigations and provide optimized values for some specific cases. Therefore, our study can assist scientists and researchers in complementing their experimental investigation in future preclinical studies on pulmonary pathology associated with inhaled hazardous and toxic environmental particles, as well as therapeutic studies for developing inhalation drug delivery.

4.
Biomed Microdevices ; 24(2): 15, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277762

RESUMO

Keeping the oxygen concentration at the desired physiological limits is a challenging task in cellular microfluidic devices. A good knowledge of affecting parameters would be helpful to control the oxygen delivery to cells. This study aims to provide a fundamental understanding of oxygenation process within a hydrogel-based microfluidic device considering simultaneous mass transfer, medium flow, and cellular consumption. For this purpose, the role of geometrical and hydrodynamic properties was numerically investigated. The results are in good agreement with both numerical and experimental data in the literature. The obtained results reveal that increasing the microchannel height delays the oxygen depletion in the absence of media flow. We also observed that increasing the medium flow rate increases the oxygen concentration in the device; however, it leads to high maximum shear stress. A novel pulsatile medium flow injection pattern is introduced to reduce detrimental effect of the applied shear stress on the cells.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Meios de Cultura , Oxigênio , Estresse Mecânico
5.
Biomech Model Mechanobiol ; 17(1): 71-86, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28785830

RESUMO

In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.


Assuntos
Líquidos Corporais/fisiologia , Modelos Biológicos , Peristaltismo/fisiologia , Reologia , Temperatura Alta , Humanos , Porosidade , Pressão , Reprodutibilidade dos Testes , Estresse Mecânico
6.
Biomed Mater Eng ; 27(1): 15-28, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175464

RESUMO

In this paper, magneto-hydrodynamic blood flows through porous arteries are numerically simulated using a locally modified homogenous nanofluids model. Blood is taken into account as the third-grade non-Newtonian fluid containing nanoparticles. In the modified nanofluids model, the viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are commonly utilized as an effective value, are locally combined with the prevalent single-phase model. The modified governing equations are solved numerically using Newton's method and a block tridiagonal matrix solver. The results are compared to the prevalent nanofluids single-phase model. In addition, the efficacies of important physical parameters such as pressure gradient, Brownian motion parameter, thermophoresis parameter, magnetic-field parameter, porosity parameter, and etc. on temperature, velocity and nanoparticles concentration profiles are examined.


Assuntos
Artérias/fisiologia , Hemorreologia , Simulação por Computador , Humanos , Hidrodinâmica , Campos Magnéticos , Modelos Cardiovasculares , Porosidade , Termodinâmica
7.
Comput Methods Programs Biomed ; 126: 3-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792174

RESUMO

In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.


Assuntos
Artérias/fisiologia , Vasos Sanguíneos/fisiologia , Sistema Cardiovascular , Hidrodinâmica , Modelos Cardiovasculares , Fluxo Pulsátil , Aceleração , Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Humanos , Campos Magnéticos , Movimento , Oscilometria , Porosidade , Pressão , Reprodutibilidade dos Testes , Resistência ao Cisalhamento , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...