Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772247

RESUMO

The detection of methane, a strong greenhouse gas, has increased in importance due to rising emissions, which partly originate from unreported and undetected leaks in oil and gas fields. The gas emitted by these leaks could be detected using an optical fiber-based photoacoustic sensor called PAS-WRAP. Here, we investigate the potential of silicon-based membranes as more sensitive microphones in the PAS-WRAP concept. Toward this goal, we built a setup with which the frequency response of the membranes was interrogated by an optical fiber. Multiple mounting mechanisms were tested by adapting commercial interferometry systems (OP1550, ZonaSens, Optics11 B.V.) to our case. Finally, methane detection was attempted using a silicon nitride membrane as a sensor. Our findings show a quality factor of 2.4 at 46 kHz and 33.6 at 168 kHz for a thin silicon nitride membrane. This membrane had a frequency response with a signal-to-background ratio of 1 ± 0.7 at 44 kHz when tested in a vacuum chamber with 4% methane at 0.94 bar. The signal-to-background ratio was not significant for methane detection; however, we believe that the methods and experimental procedures that we used in this work can provide a useful reference for future research into gas trace detection with optical fiber-based photoacoustic spectroscopy.

2.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679720

RESUMO

We demonstrate a highly sensitive acoustic vibration sensor based on a tapered-tip optical fiber acting as a microcantilever. The tapered-tip fiber has a unique output profile that exhibits a circular fringe pattern, whose distribution is highly sensitive to the vibration of the fiber tip. A piezo transducer is used for the acoustic excitation of the fiber microcantilever, which results in a periodic bending of the tip and thereby a significant output power modulation. Using a multimode readout fiber connected to an electric spectrum analyzer, we measured the amplitude of these power modulations over the 10-50 kHz range and observed resonances over certain frequency ranges. Two types of tapered-tip fibers were fabricated with diameter values of 1.5 µm and 1.8 µm and their frequency responses were compared with a non-tapered fiber tip. Thanks to the resonance effect as well as the sensitive fringe pattern of the tapered-tip fibers, the limit of detection and the sensitivity of the fiber sensor were obtained as 0.1 nm and 15.7 V/nm, respectively, which were significantly better than the values obtained with the non-tapered fiber tip (i.e., 1.1 nm and 0.12 V/nm, respectively). The sensor is highly sensitive, easy to fabricate, low-cost, and can detect sub-nanometer displacements, which makes it a promising tool for vibration sensing, particularly in the photoacoustic sensing of greenhouse gases.


Assuntos
Fibras Ópticas , Vibração , Acústica , Análise Espectral , Transdutores
3.
Opt Lett ; 48(2): 207-210, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638419

RESUMO

Here we demonstrate a new, to the best of our knowledge, type of 3-dB coupler that has an ultra-broadband operational range from 1300 to 1600 nm with low fabrication sensitivity. The overall device size is 800 µm including in/out S-bend waveguides. The coupler is an asymmetric non-uniform directional coupler that consists of two tapered waveguides. One of the coupler arms is shifted by 100 µm in the propagation direction, which results in a more wavelength-insensitive 3-dB response compared to a standard (not shifted) coupler. Moreover, compared to a long adiabatic coupler, we achieved a similar wavelength response at a 16-times-smaller device length. The couplers were fabricated using the silicon nitride platform of Lionix International. We also experimentally demonstrated an optical switch that is made by using two of these couplers in a Mach-Zehnder interferometer configuration. According to experimental results, this optical switch exhibits -10 dB of extinction ratio over the 1500-1600 nm wavelength range. Our results indicate that this new type of coupler holds great promise for various applications, including optical imaging, telecommunications, and reconfigurable photonic processors where compact, fabrication-tolerant, and wavelength-insensitive couplers are essential.

4.
Soft Matter ; 19(4): 615-624, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36445288

RESUMO

The rheological characterization of soft suspended bodies, such as cells, organoids, or synthetic microstructures, is particularly challenging, even with state-of-the-art methods (e.g. atomic force microscopy, AFM). Providing well-defined boundary conditions for modeling typically requires fixating the sample on a substrate, which is a delicate and time-consuming procedure. Moreover, it needs to be tuned for each chemistry and geometry. Here, we validate a novel technique, called hydraulic force spectroscopy (HFS), against AFM dynamic indentation taken as the gold standard. Combining experimental data with finite element modeling, we show that HFS gives results comparable to AFM microrheology over multiple decades, while obviating any sample preparation requirements.

5.
Opt Lett ; 47(23): 6281-6284, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219227

RESUMO

Here we demonstrate an inexpensive, simple, and ultra-sensitive refractive index sensor based on a tapered tip optical fiber combined with a straightforward image analysis method. The output profile of this fiber exhibits circular fringe patterns whose intensity distribution dramatically changes even with ultra-small refractive index variations in the surrounding medium. The sensitivity of the fiber sensor is measured using different concentrations of saline solutions with a transmission setup consisting of a single wavelength light source, a cuvette, an objective lens, and a camera. By analyzing the areal changes in the center of the fringe patterns for each saline solution, we obtain an unprecedented sensitivity value of 24,160 dB/RIU (refractive index unit), which is the highest value reported so far among intensity-modulated fiber refractometers. The resolution of the sensor is calculated to be 6.9 ×10-9. Moreover, we measure the sensitivity of the fiber tip in the backreflection mode using salt-water solutions and obtained a sensitivity value of 620 dB/RIU. This sensor is ultra-sensitive, simple, easy to fabricate, and low-cost, which makes it a promising tool for on-site measurements and point-of-care applications.

6.
Commun Biol ; 4(1): 610, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021241

RESUMO

Micropipette aspiration (MPA) is an essential tool in mechanobiology; however, its potential is far from fully exploited. The traditional MPA technique has limited temporal and spatial resolution and requires extensive post processing to obtain the mechanical fingerprints of samples. Here, we develop a MPA system that measures pressure and displacement in real time with sub-nanometer resolution thanks to an interferometric readout. This highly sensitive MPA system enables studying the nanoscale behavior of soft biomaterials under tension and their frequency-dependent viscoelastic response.


Assuntos
Materiais Biocompatíveis/química , Elasticidade , Interferometria/métodos , Nanotecnologia/métodos , Oócitos/citologia , Óptica e Fotônica/métodos , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Bovinos , Teste de Materiais , Modelos Biológicos
7.
Opt Express ; 28(15): 23003-23011, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752551

RESUMO

Here, we present the design and simulation of an ultrawide-bandwidth on-chip spectrometer that can be used in various applications, e.g. spectral tissue sensing. It covers 1200 nm wavelength range (400 nm-1600 nm) with 2 nm spectral resolution. The overall design size is only 3 × 3 cm2. The ultra-wide spectral range is made possible by using novel on-chip band-pass filters for the coarse wavelength division. The fine resolution is provided by the arrayed waveguide gratings. The band-pass filter is formed by using bend waveguides and adiabatic full-couplers. The additional loss caused by the band-pass filter is relatively small. The proposed spectrometer covers entire 400 nm-1600 nm range continuously with low crosstalk values. We envision that this design can be used in several different applications including food safety, agriculture, industrial inspection, optical imaging, and biomedical research.

8.
Opt Express ; 28(10): 14618-14626, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403499

RESUMO

Here, we present a compact, high-resolution, and ultrabroad-bandwidth arrayed waveguide grating (AWG) realized in a silicon nitride (Si3N4) platform. The AWG has a cascaded configuration with a 1×3 flat-passband AWG as the primary filter and three 1×70 AWGs as secondary filters (i.e. 210 output channels in total). The primary AWG has 0.5-dB bandwidth of 45 nm over 190 nm spectral range. The ultrabroad-bandwidth is achieved by using an innovative design that is based on a multiple-input multi-mode interference (MMI) coupler placed at the entrance of the first free propagation region of the primary AWG. The optical bandwidth of the cascaded AWG is 190 nm, and the spectral resolution is 1 nm. The overall device size is only 1.1 × 1.0 cm2. Optical loss at the central channel is 4 dB, which is 3 dB less than a conventional design with the same bandwidth and resolution values but using a primary filter with Gaussian transfer function. To the best of our knowledge, this is the first demonstration of an ultrabroad-bandwidth cascaded AWG on a small footprint. We also propose a novel low-loss (∼ 0.8 dB) design using a small AWG instead of an MMI coupler in the primary filter part, which can be used in applications where the light intensity is very weak, such as Raman spectroscopy.

9.
Opt Express ; 25(2): 1487-1494, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158029

RESUMO

In this work, a compact and ultrahigh-resolution Fourier-transform spectrometer design is presented which is in great demand in numerous areas. The spectrometer is formed by sequentially-activated 60 Mach-Zehnder interferometers that are connected to photodetectors through very-low-loss beam combiners based on two-mode interference. The long optical delays are provided by tapping the propagating light out at certain locations on the optical waveguides by using electro-optically-controlled directional couplers. A design example with a spectral resolution of 500 MHz (~1 pm) and bandwidth of 15 GHz is presented for a device size of only 2 cm × 0.5 cm (1 cm2).

10.
Opt Express ; 24(25): 28459-28466, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958489

RESUMO

In this work, a novel beam scanner design based on non-moving parts is introduced which will eliminate the phase and inaccuracy problems of the mechanical scanners while providing two times imaging speed improvement for optical coherence tomography systems. The design is comprised of electro-optically activated switches that are placed on the sample arm. For the example considered here, lateral resolution of 20 µm, and lateral scanning range of 1 mm are aimed at which resulted in a scanner size of 1 mm × 9 mm. Due to its compact size, proposed design can also be implemented in forward-looking endoscopic probes.

11.
Opt Express ; 24(23): 26709-26714, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857401

RESUMO

The imaging speed of a time domain optical coherence tomography (OCT) system is limited by the speed of the moving mirror. As a solution to this problem an integrated-optics-based multiple-reference TD-OCT system is presented in this work. The reference and sample lights will be sequentially tapped out at multiple locations using electro-optically controlled switches. For the design considered here an axial resolution of 20 µm and a depth range of 1 mm at the central wavelength of 800 nm were aimed at. With this design the mechanical scanner will be completely eliminated and, thereby imaging speed will be significantly improved.

12.
Biomed Opt Express ; 6(9): 3313-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417503

RESUMO

The mechanical stability of the cornea is critical for maintaining its normal shape and refractive function. Here, we report an observation of the mechanical resonance modes of the cornea excited by sound waves and detected by using phase-sensitive optical coherence tomography. The cornea in bovine eye globes exhibited three resonance modes in a frequency range of 50-400 Hz. The vibration amplitude of the fundamental mode at 80-120 Hz was ~8 µm at a sound pressure level of 100 dB (2 Pa). Vibrography allows the visualization of the radially symmetric profiles of the resonance modes. A dynamic finite-element analysis supports our observation.

13.
Opt Lett ; 37(20): 4281-3, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23073437

RESUMO

We present a new flat-focal-field arrayed-waveguide grating (AWG) design that utilizes an integrated field-flattening lens placed in the second star coupler. The effective index difference between slab and lens region is obtained by introducing a thin silicon nitride (SiN) layer to a silicon oxynitride environment. Depending upon the SiN layer position, two different lens designs are implemented. As a proof of concept two 81-channel AWGs, one with and one without the lens, are designed, fabricated, and characterized for each lens design. The measurements show that the adjacent crosstalk at the peripheral channels is improved by 2 dB, an improvement which is predicted to become more pronounced for AWGs with higher number of output waveguides (e.g., ~16 dB for 200 output waveguides). Only 0.4 dB of extra excess loss is introduced by the lens.

14.
Opt Lett ; 36(7): 1293-5, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479062

RESUMO

We designed and fabricated an arrayed-waveguide grating (AWG) in silicon oxynitride as a spectrometer for spectral domain optical coherence tomography (SD-OCT). The AWG has a footprint of only 3.0 cm × 2.5 cm, operates at a center wavelength of 1300 nm, and has 78 nm free spectral range. OCT measurements are performed that demonstrate imaging up to a maximum depth of 1 mm with an axial resolution of 19 µm, both in agreement with the AWG design parameters. Using the AWG spectrometer combined with a fiber-based SD-OCT system, we demonstrate cross-sectional OCT imaging of a multilayered scattering phantom.


Assuntos
Dispositivos Ópticos , Análise Espectral/instrumentação , Integração de Sistemas , Tomografia de Coerência Óptica/métodos , Interferometria , Lentes , Imagens de Fantasmas , Silício/química , Tomografia de Coerência Óptica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...