Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 59(12): 1225-1235, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121211

RESUMO

Signal amplification by reversible exchange (SABRE) is a robust and inexpensive hyperpolarization (HP) technique to enhance nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) signals using parahydrogen (pH2 ). The substrate scope of SABRE is continually expanding. Here, we present the polarization of three antifungal drugs (voriconazole, clotrimazole, and fluconazole) and elicit the detailed HP mechanisms for 1 H and 15 N nuclei. In this exploratory work, 15 N polarization values of ~1% were achieved using 50% pH2 in solution of 3-mM catalyst and 60-mM substrate in perdeuterated methanol. All hyperpolarized 15 N sites exhibited long T1 in excess of 1 min at a clinically relevant field of 1 T. Hyperpolarizing common drugs is of interest due to their potential biomedical applications as MRI contrast agents or to enable studies on protein dynamics at physiological concentrations. We optimize the polarization with respect to temperature and the polarization transfer field (PTF) for 1 H nuclei in the millitesla regime and for 15 N nuclei in the microtesla regime, which provides detailed insights into exchange kinetics and spin evolution. This work broadens the SABRE substrate scope and provides mechanistic and kinetic insights into the HP process.


Assuntos
Antifúngicos , Imageamento por Ressonância Magnética , Catálise , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio
2.
J Magn Reson ; 312: 106700, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32092678

RESUMO

We present a simple-to-implement pneumatic sample shuttle for automation of magnetic field cycling and multidimensional NMR. The shuttle system is robust allowing automation of hyperpolarized and non-hyperpolarized measurements, including variable field lifetime measurements, SABRE polarization optimization, and SABRE multidimensional experiments. Relaxation-protected singlet states are evaluated by variable-field T1 and TS measurements. Automated shuttling facilitates characterization of hyperpolarization dynamics, field dependence and polarization buildup rates. Furthermore, reproducible hyperpolarization levels at every shuttling event enables automated 2D hyperpolarized NMR, including the first inverse 15N/1H HSQC. We uncover binding mechanisms of the catalytic species through cross peaks that are not accessible in standard one-dimensional hyperpolarized experiments. The simple design of the shuttling setup interfaced with standard TTL signals allows easy adaptation to any standard NMR magnet.


Assuntos
Hidrogênio/química , Espectroscopia de Ressonância Magnética/instrumentação , Catálise , Desenho de Equipamento , Campos Magnéticos , Modelos Moleculares , Isótopos de Nitrogênio/química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...