Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Turk J Chem ; 47(6): 1380-1388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38544713

RESUMO

Technological devices are mostly manufactured by conductive and semiconductive materials. As advancement in the last decades, carbon nanomaterials have been explored in electrical/electronic technology due to their unique performances for manufacturing developing, and prudential miniaturized and flexible electrical/electronic devices. In the era of sustainable and clean carbon technology; renewable, alternative, biodegradable, and eco-friendly new carbon resources are required. Biomass could be the answer to offer inspiring carbon allotropes from nature to be suitable for developing electrical/electronic devices. In this article, deriving of the technological carbonaceous material from biomass, studies although they are very limited in the literature on obtaining the electrical conductive ones and the progress as electrical conductive renewable material are presented.

2.
Bioresour Technol ; 246: 34-47, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28781204

RESUMO

Biochar can be used as a sorbent to remove inorganic pollutants from water but the efficiency of sorption can be improved by activation or modification. This review evaluates various methods to increase the sorption efficiency of biochar including activation with steam, acids and bases and the production of biochar-based composites with metal oxides, carbonaceous materials, clays, organic compounds, and biofilms. We describe the approaches, and explain how each modification alters the sorption capacity. Physical and chemical activation enhances the surface area or functionality of biochar, whereas modification to produce biochar-based composites uses the biochar as a scaffold to embed new materials to create surfaces with novel surface properties upon which inorganic pollutants can sorb. Many of these approaches enhance the retention of a wide range of inorganic pollutants in waters, but here we provide a comparative assessment for Cd2+, Cu2+, Hg2+, Pb2+, Zn2+, NH4+, NO3-, PO43-, CrO42- and AsO43-.


Assuntos
Carvão Vegetal , Adsorção , Compostos Orgânicos , Vapor , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...