Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(3-4): 404-416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35849112

RESUMO

Chitosanases are potential candidates for chitooligosaccharides (COS) production-based industries, therefore, the discovery of chitosanases having commercial potential will remain a priority worldwide. This study aims to characterize different chitosanases of Bacillus strains for COS production. Six different indigenous Bacillus strains (B. cereus EGE-B-6.1m, B. cereus EGE-B-2.5m, B. cereus EGE-B-5.5m, B. cereus EGE-B-10.4i, B. thuringiensis EGE-B-3.5m, and B. mojavensis EGE-B-5.2i) were used to purify and characterize chitosanases. All purified chitosanases have a similar molecular weight (37 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, other characteristics such as optimum temperature and pH, kinetic parameters (Km and Vmax ), temperature, and pH stabilities were dissimilar among the strains of different Bacillus species and within the same species. Furthermore, chitosanases of all strains were able to successfully hydrolyze chitosan to COS and oligomers of the degree of polymerization 2-6 were detected with chitobiose and chitotriose as major hydrolysis products. The relative yields of COS were in a range of 19%-31% and chitosanase of B. thuringiensis EGE-B-3.5m turned out to be the best enzyme in terms of its characteristics and COS production potential with maximum relative yield (31%). Results revealed that Bacillus chitosanases could be used directly for efficient bioconversion of chitosan into COS and will be valuable for large-scale production of biologically active COS.


Assuntos
Bacillus , Quitosana , Quitosana/química , Quitina , Glicosídeo Hidrolases
2.
Steroids ; 135: 9-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678446

RESUMO

Chronic inflammation is associated to 25% of cancer cases according to epidemiological data. Therefore, inhibition of inflammation-induced carcinogenesis can be an efficient therapeutic approach for cancer chemoprevention in drug development studies. It is also determined that anti-inflammatory drugs reduce cancer incidence. Cell culture-based in vitro screening methods are used as a fast and efficient method to investigate the biological activities of the biomolecules. In addition, saponins are molecules that are isolated from natural sources and are known to have potential for tumor inhibition. Studies on the preparation of analogues of cycloartane-type sapogenols (9,19-cyclolanostanes) have so far been limited. Therefore we have decided to direct our efforts toward the exploration of new anti-tumor agents prepared from cycloastragenol and its production artifact astragenol. The semi-synthetic derivatives were prepared mainly by oxidation, condensation, alkylation, acylation, and elimination reactions. After preliminary studies, five sapogenol analogues, two of which were new compounds (2 and 3), were selected and screened for their inhibitory activity on cell viability and NFκB signaling pathway activity in LNCaP prostate cancer cells. We found that the astragenol derivatives 1 and 2 as well as cycloastragenol derivatives 3, 4, and 5 exhibited strong inhibitory activity on NFκB signaling leading the repression of NFκB transcriptional activation and suppressed cell proliferation. The results suggested that these molecules might have significant potential for chemoprevention of prostate carcinogenesis induced by inflammatory NFκB signaling pathway.


Assuntos
Carcinogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Sapogeninas/química , Sapogeninas/farmacologia , Triterpenos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Dinoprostona/metabolismo , Humanos , Inflamação/patologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
3.
Appl Biochem Biotechnol ; 172(3): 1307-19, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24166102

RESUMO

Ettlia oleoabundance (formerly known as Neochloris oleoabundance) is an attractive candidate for biodiesel production because of its high lipid accumulation, and it's taking the majority of the attention among the strains of Ettlia genus; however, potential of the other genus members is unknown. An indigenous strain from Salda Lake (South West Turkey) identified by 18S rDNA sequencing as Ettlia texensis (GenBank accession no: JQ038221), and its fatty acid and carotenoid compositions under phototrophic and mixotrophic conditions was investigated to evaluate the potential of the strain for commercial uses. A threefold increase was observed in total lipid content (total fatty acids; from 13% to 37%) in mixotrophic culture respect to the phototrophic growth conditions. The oleic acid (C18:1) and alpha-linolenic acid (18:3) were the major unsaturated fatty acids accounting for 40% and 13.2% of total fatty acids in mixotrophic culture, respectively. Carotenoid analyses of the mixotrophic culture revealed the metabolite canthaxanthin, a commercially valuable carotenoid used mainly for food coloring, was the major constituent among other pigments. The possible use of E. texensis in biotechnological applications is discussed.


Assuntos
Biocombustíveis , Carotenoides/química , Ácidos Graxos/química , Volvocida/química , Biomassa , Carotenoides/genética , Carotenoides/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Luz , Dados de Sequência Molecular , Processos Fototróficos , RNA Ribossômico 18S/genética , Volvocida/genética , Volvocida/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...