Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Turk J Pharm Sci ; 17(5): 535-541, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33177935

RESUMO

OBJECTIVES: The aim of this study was to determine the acid dissociation constant (pKa) of piroxicam using high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-Vis) spectrophotometry, and to determine the partition coefficient (Log P), distribution coefficient (Log D), and "Log kw" values of piroxicam using HPLC. MATERIALS AND METHODS: The HPLC studies were performed on a reversed-phase ACE C18 (150x4.6 mm ID, 5 µm) column at a flow rate of 1.0 mL min-1. The detector was set to 360 nm. Log D at different pH values (3.0-6.5) was examined with a phosphate buffer (20 mM) and acetonitrile (30:70 v/v) mixture as the mobile phase. For pKa determination, HPLC studies were performed with a mixture of phosphate buffer (20 mM) and methanol within the pH range of 3.50-6.00. Log kw measurements were performed with phosphate buffer (20 mM) and MeOH (from 20:80 v/v to 10:90 v/v) mixtures within the pH range of 3.50-6.00. UV-Vis spectrophotometric pKa measurements were performed at 285 nm wavelength. RESULTS: The pKa value of piroxicam was found to be 5.3 by HPLC and 5.7 by UV-Vis spectrophotometry. Log P of piroxicam was determined as 1.58 in our experimental conditions. Log D values were 1.57, 1.57, 1.44, 1.13, and 0.46 for pH values of 3.17, 3.79, 4.44, 5.42, and 6.56, respectively. CONCLUSION: In the literature, different Log P (3.1, 2.2, and 0.6) and pKa (6.3 and 4.8) values were reported for piroxicam. The Log P (1.58) and pKa (5.3 and 5.7) values obtained for piroxicam in our study were within the range of the literature values. All these results indicate that different experimental approaches used for the determination of physicochemical properties could provide different values. Although UV spectrophotometry is easy to apply, HPLC is a unique technique for simultaneous determination of pKa, Log D, and Log P values of compounds.

2.
Environ Sci Pollut Res Int ; 25(29): 29493-29504, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136182

RESUMO

Clean and safe water is fundamental for human and environmental health. Traditional remediation of textile dye-polluted water with chemical, physical, and biological processes has many disadvantages. Due to this, nano-engineered materials are drawing more attention to this area. However, the widespread use of nano-particles for this purpose may lead to photocatalytic degradation of xenobiotics, while increasing the risk of nano-particle-induced ecotoxicity. Therefore, we comparatively evaluated the toxicity of novel synthesized core@shell TiO2 and SiO2 nano-particles to embryonic stages of Danio rerio and Xenopus laevis. The ability of photocatalytic destruction of the synthesized nano-particles was tested using toxic azo dye, disperse red 65, and the effects of reducing the toxicity were evaluated. The reflux process was used to synthesize catalysts in the study. The samples were characterized by scanning electron microscopy, X-ray fluorescence spectroscopy, X-ray diffractometry, BET surface area, and UV-vis-diffuse reflectance spectra. It was determined that the synthesized nano-particles had no significant toxic effect on D. rerio and X. laevis embryos. On the other hand, photocatalytic degradation of the dye significantly reduced lethal effects on embryonic stages of the organisms. Therefore, we suggest that specific nano-particles may be useful for water remediation to prevent human health and environmental impact. However, further risk assessment should be conducted for the ecotoxicological risks of nano-particles spilled in aquatic environments and the relationship of photocatalytic interaction with nano-particles and xenobiotics.


Assuntos
Compostos Azo/química , Compostos Azo/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catálise , Embrião não Mamífero/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Fotoquímica/métodos , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Indústria Têxtil , Titânio/química , Titânio/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/química , Xenopus laevis/embriologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...