Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 27(6): 1010-1018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36632290

RESUMO

Background: This study was conducted to evaluate the effect of brachytherapy (BT) customized mold [Condensation silicone elastomer (ProtesilTM)] and its thickness on the dose distribution pattern of deep nonmelanoma skin cancers (NMSC). Materials and methods: Four blocks of mold material were constructed in 5, 10, 15, and 20 mm thickness and 100 × 100 mm2 area by a plastic cast. The high dose rate (HDR) plus treatment planning system (TPS) (Version 3, Eckert & Ziegler BEBIG Gmbh, Berlin, Germany) with a 60Co source (model: Co0.A86, EZAG BEBIG, Berlin, Germany) as an high dose rate brachytherapy (HDR-BT) source was used. Solid phantom and MOSFETTM and GAFCHROMICTM EBT3 film dosimeters were used for experimental dosimetry of the different thicknesses (up to 20 mm) of BT customized mold. Skin dose and dose to different depths were evaluated. Result: The TPS overestimated the calculated dose to the surface. Skin dose can be reduced from 250% to 150% of the prescription dose by increasing mold thickness from 5 mm to 20 mm. There was a 7.7% difference in the calculated dose by TPS and the measured dose by MOSFET. There was a good agreement between film dosimetry, MOSFET detector, and TPS' results in depths less than 5 mm. Conclusion: Each BT department should validate any individualized material chosen to construct the customized surface BT mold. Increasing the mold thickness can treat lesions without overexposing the skin surface. Superficial BT can be recommended as an appropriate treatment option for some deep NMSC lesions (up to 20 mm) with pre-planning considerations employing thicker molds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...